$x = 2 - \sqrt{3}$ のとき、$x + \frac{1}{x}$、$x^2 + \frac{1}{x^2}$、$x^3 + \frac{1}{x^3}$ の値をそれぞれ求める問題です。代数学式の計算有理化展開代入2025/7/281. 問題の内容x=2−3x = 2 - \sqrt{3}x=2−3 のとき、x+1xx + \frac{1}{x}x+x1、x2+1x2x^2 + \frac{1}{x^2}x2+x21、x3+1x3x^3 + \frac{1}{x^3}x3+x31 の値をそれぞれ求める問題です。2. 解き方の手順まず、x=2−3x = 2 - \sqrt{3}x=2−3 から 1x\frac{1}{x}x1 を求めます。1x=12−3=2+3(2−3)(2+3)=2+34−3=2+3\frac{1}{x} = \frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3}x1=2−31=(2−3)(2+3)2+3=4−32+3=2+3次に、x+1xx + \frac{1}{x}x+x1 を計算します。x+1x=(2−3)+(2+3)=4x + \frac{1}{x} = (2 - \sqrt{3}) + (2 + \sqrt{3}) = 4x+x1=(2−3)+(2+3)=4次に、x2+1x2x^2 + \frac{1}{x^2}x2+x21 を計算します。(x+1x)2=x2+2+1x2(x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2}(x+x1)2=x2+2+x21x2+1x2=(x+1x)2−2=42−2=16−2=14x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = 4^2 - 2 = 16 - 2 = 14x2+x21=(x+x1)2−2=42−2=16−2=14次に、x3+1x3x^3 + \frac{1}{x^3}x3+x31 を計算します。(x+1x)3=x3+3x2(1x)+3x(1x2)+1x3=x3+3x+3x+1x3=x3+1x3+3(x+1x)(x + \frac{1}{x})^3 = x^3 + 3x^2(\frac{1}{x}) + 3x(\frac{1}{x^2}) + \frac{1}{x^3} = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x})(x+x1)3=x3+3x2(x1)+3x(x21)+x31=x3+3x+x3+x31=x3+x31+3(x+x1)x3+1x3=(x+1x)3−3(x+1x)=43−3(4)=64−12=52x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x}) = 4^3 - 3(4) = 64 - 12 = 52x3+x31=(x+x1)3−3(x+x1)=43−3(4)=64−12=523. 最終的な答えx+1x=4x + \frac{1}{x} = 4x+x1=4x2+1x2=14x^2 + \frac{1}{x^2} = 14x2+x21=14x3+1x3=52x^3 + \frac{1}{x^3} = 52x3+x31=52