等比数列$\{a_n\}$において、公比が2、第8項が2048であるとき、初項と一般項を求める。

代数学等比数列数列一般項初項公比
2025/7/28

1. 問題の内容

等比数列{an}\{a_n\}において、公比が2、第8項が2048であるとき、初項と一般項を求める。

2. 解き方の手順

(i) 初項を求める
等比数列の一般項は、an=a1rn1a_n = a_1 r^{n-1}で表される。ここで、ana_nは第n項、a1a_1は初項、rrは公比である。
問題文より、r=2r=2, a8=2048a_8 = 2048であるから、
a8=a1281=a127=2048a_8 = a_1 \cdot 2^{8-1} = a_1 \cdot 2^7 = 2048
27=1282^7 = 128であるから、
128a1=2048128 a_1 = 2048
a1=2048128=16a_1 = \frac{2048}{128} = 16
(ii) 一般項を求める
等比数列の一般項の式は、an=a1rn1a_n = a_1 r^{n-1}である。
a1=16a_1 = 16, r=2r = 2を代入すると、
an=162n1=242n1=2n+3a_n = 16 \cdot 2^{n-1} = 2^4 \cdot 2^{n-1} = 2^{n+3}

3. 最終的な答え

(i) 初項: 16
(ii) 一般項: an=2n+3a_n = 2^{n+3}

「代数学」の関連問題

2次関数 $y = x^2 - 2ax + b$ (定義域 $0 \le x \le 6$) の最大値が10、最小値が-6となるように、定数 $a, b$ の値を定める。

二次関数最大値最小値場合分け
2025/7/28

2次関数 $y = x^2 - 2ax + b$ ($0 \le x \le 6$) の最大値が10、最小値が-6であるとき、定数 $a$、$b$ の値を求めよ。

二次関数最大値最小値平方完成定義域
2025/7/28

複素数 $Z = 4 - 2i$ を原点を中心に $-\frac{\pi}{4}$ ラジアン回転させた点を表す複素数を求める。ここで、$i$ は虚数単位を表す。

複素数複素平面回転虚数単位
2025/7/28

与えられた複素数の和を計算する問題です。具体的には、$\frac{5-j}{1-3j} + \frac{9+5j}{3+j}$ を計算します。

複素数複素数の計算複素数の加算分母の実数化
2025/7/28

実数 $a$ を定数とし、$x$ の関数 $f(x) = ax^2 + 4ax + a^2 - 1$ を考える。区間 $-4 \leq x \leq 1$ における関数 $f(x)$ の最大値が $5...

二次関数最大値平方完成放物線
2025/7/28

実数 $a$ を定数とし、$x$ の関数 $f(x) = ax^2 + 4ax + a^2 - 1$ を考える。区間 $-4 \le x \le 1$ における関数 $f(x)$ の最大値が5であると...

二次関数最大値平方完成場合分け
2025/7/28

2次関数 $y = ax^2 + bx + 1$ が $x = -1$ のとき最大値3をとる。このとき、$a$ と $b$ の値を求める。

二次関数最大値最小値絶対値平方完成
2025/7/28

$1 \le x \le 27$ のとき、関数 $y = (\log_3 x)^2 - \log_3 x^2 - 3$ の最大値と最小値を求め、そのときの $x$ の値を求める。

対数最大値最小値二次関数不等式
2025/7/28

与えられた二次不等式を解く問題です。具体的には、以下の不等式を解きます。 (1) $x^2 + 5x - 6 > 0$ (2) $x^2 - 3x - 10 \ge 0$ (3) $x^2 - 8x ...

二次不等式因数分解不等式
2025/7/28

問題36は2次方程式の実数解の個数を求める問題で、問題7は2次不等式を解く問題です。 問題36は、 (1) $x^2 + 7x + 1 = 0$ (2) $4x^2 - 10x + 15 = 0$ 問...

二次方程式二次不等式判別式解の個数因数分解
2025/7/28