10人を3人、3人、4人の3つのグループに分けるとき、分け方は何通りあるかを求める問題です。

離散数学組み合わせ順列場合の数組合せ
2025/7/29

1. 問題の内容

10人を3人、3人、4人の3つのグループに分けるとき、分け方は何通りあるかを求める問題です。

2. 解き方の手順

まず、10人から3人を選ぶ組み合わせの数を計算します。これは10C3_{10}C_3で表されます。
10C3=10!3!(103)!=10!3!7!=10×9×83×2×1=10×3×4=120_{10}C_3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 10 \times 3 \times 4 = 120
次に、残りの7人から3人を選ぶ組み合わせの数を計算します。これは7C3_{7}C_3で表されます。
7C3=7!3!(73)!=7!3!4!=7×6×53×2×1=7×5=35_{7}C_3 = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 7 \times 5 = 35
最後に、残りの4人から4人を選ぶ組み合わせの数を計算します。これは4C4_{4}C_4で表されます。
4C4=4!4!(44)!=4!4!0!=1_{4}C_4 = \frac{4!}{4!(4-4)!} = \frac{4!}{4!0!} = 1
したがって、3人、3人、4人のグループに分ける組み合わせの数は、120×35×1=4200120 \times 35 \times 1 = 4200となります。
ただし、3人のグループが2つあるため、グループの区別がないことから、2!で割る必要があります。
42002!=42002=2100\frac{4200}{2!} = \frac{4200}{2} = 2100

3. 最終的な答え

2100通り

「離散数学」の関連問題

ド・モルガンの法則を用いて、等式 $(A \cup B)^C = \bar{A} \cap \bar{B}$ を証明せよ。 そして、$(A \cup B)^C = (\bar{A} \cap \bar...

集合論ド・モルガンの法則補集合論理
2025/7/29

ド・モルガンの法則を用いて、集合に関する等式 $\overline{(A \cup B)} \cap \overline{C} = (\overline{A} \cap \overline{B}) \...

集合論ド・モルガンの法則集合の演算
2025/7/29

この問題は、写像に関する定理とその証明の穴埋め問題です。具体的には、(1)定理の仮定部分にある3つの空欄を埋め、(2)与えられた定理の証明の未完成部分を完成させる必要があります。

写像単射合成写像証明
2025/7/29

問題は、複数の球がひもでつながれている図が与えられ、以下の条件を満たす球の塗り分け方を求めるものです。 * それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。 * 1本のひ...

組み合わせグラフ彩色数え上げ場合の数
2025/7/29

9人の生徒を、指定された人数構成のグループに分ける場合の数を計算する問題です。 具体的には、 - 4人と5人の2つの組に分ける方法 - 4人と3人と2人の3つの組に分ける方法 - 3人ずつA,B,Cの...

組み合わせ場合の数順列組合せ論
2025/7/29

与えられた図のような道のある地域で、A地点からB地点まで最短経路で移動する方法について、以下の問いに答えます。 (1) AからCまでの最短経路は何通りあるか。 (2) CからBまでの最短経路は何通りあ...

組み合わせ最短経路場合の数
2025/7/29

2種類の記号、○と×を、重複を許して指定された個数だけ1列に並べる場合の数を求める問題です。 (1) 3個の場合 (2) 6個の場合

組み合わせ場合の数順列二項定理
2025/7/29

集合 $A = \{x \in \mathbb{R} \mid -1 \le x \le 4\}$ と集合 $B = \{x \in \mathbb{R} \mid x < 0 \text{ または ...

集合集合演算補集合論理
2025/7/28

与えられたブール関数 $f(x, y, z) = \overline{x}yz + x\overline{y}z + xy\overline{z} + xyz$ を簡略化し、$f(x, y, z) =...

ブール代数論理関数関数簡略化
2025/7/28

与えられた論理式 $L = \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overl...

ブール代数論理式論理回路簡略化
2025/7/28