(1) 次の三角関数を鋭角の三角関数で表す。 1. $\cos \frac{17}{5}\pi$ 2. $\cos \frac{5}{7}\pi$ 3. $\sin (-\frac{7}{8}\pi)$ 4. $\sin (-\frac{19}{8}\pi)$ (2) 次の値を求める。 1. $\tan (-\frac{\pi}{6})$ 2. $\tan (-\frac{\pi}{4})$
2025/7/29
1. 問題の内容
(1) 次の三角関数を鋭角の三角関数で表す。
1. $\cos \frac{17}{5}\pi$
2. $\cos \frac{5}{7}\pi$
3. $\sin (-\frac{7}{8}\pi)$
4. $\sin (-\frac{19}{8}\pi)$
(2) 次の値を求める。
1. $\tan (-\frac{\pi}{6})$
2. $\tan (-\frac{\pi}{4})$
2. 解き方の手順
(1)
1. $\cos \frac{17}{5}\pi = \cos (\frac{17}{5}\pi - 2\pi \times 1) = \cos (\frac{17}{5}\pi - \frac{10}{5}\pi) = \cos \frac{7}{5}\pi = \cos (\pi + \frac{2}{5}\pi) = -\cos \frac{2}{5}\pi$
2. $\cos \frac{5}{7}\pi = \cos (\pi - \frac{2}{7}\pi) = -\cos \frac{2}{7}\pi$
3. $\sin (-\frac{7}{8}\pi) = -\sin \frac{7}{8}\pi = -\sin (\pi - \frac{1}{8}\pi) = -\sin \frac{1}{8}\pi$
4. $\sin (-\frac{19}{8}\pi) = -\sin \frac{19}{8}\pi = -\sin (2\pi + \frac{3}{8}\pi) = -\sin (\frac{3}{8}\pi) = -\sin (\frac{\pi}{2} + \frac{1}{8}\pi) = -\cos \frac{3}{8}\pi$
(2)
1. $\tan (-\frac{\pi}{6}) = -\tan \frac{\pi}{6} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$
2. $\tan (-\frac{\pi}{4}) = -\tan \frac{\pi}{4} = -1$
3. 最終的な答え
(1)
1. $-\cos \frac{2}{5}\pi$
2. $-\cos \frac{2}{7}\pi$
3. $-\sin \frac{1}{8}\pi$
4. $-\cos \frac{3}{8}\pi$
(2)