関数 $f(x) = x^3 + 7$ を微分し、$f'(-5)$ の値を求める。

解析学微分関数の微分導関数微分係数
2025/4/5

1. 問題の内容

関数 f(x)=x3+7f(x) = x^3 + 7 を微分し、f(5)f'(-5) の値を求める。

2. 解き方の手順

まず、f(x)=x3+7f(x) = x^3 + 7 を微分して f(x)f'(x) を求める。
f(x)f(x) の微分は、べき乗の微分公式と定数の微分公式を用いる。
べき乗の微分公式は、ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1} である。
定数の微分は0である。
したがって、
f(x)=ddx(x3+7)=ddx(x3)+ddx(7)=3x2+0=3x2f'(x) = \frac{d}{dx}(x^3 + 7) = \frac{d}{dx}(x^3) + \frac{d}{dx}(7) = 3x^2 + 0 = 3x^2
次に、f(5)f'(-5) を求める。
f(5)f'(-5) は、f(x)f'(x)x=5x = -5 を代入することで得られる。
f(5)=3(5)2=3(25)=75f'(-5) = 3(-5)^2 = 3(25) = 75

3. 最終的な答え

f(x)=3x2f'(x) = 3x^2
f(5)=75f'(-5) = 75

「解析学」の関連問題

与えられた関数 $y = \log \frac{x \sqrt{2x+1}}{(2x-1)^3}$ の導関数を求める問題です。

導関数対数関数微分
2025/7/23

次の3つの不定積分を求める問題です。 (1) $\int \frac{dx}{1 + \cos x + \sin x}$ (2) $\int \sin^3 x \cos^3 x dx$ (3) $\i...

不定積分三角関数置換積分半角の公式
2025/7/23

関数 $f(x) = x^{3x}$ ($x > 0$) を対数微分法を用いて微分せよ。

微分対数微分法逆関数三角関数
2025/7/23

次の極限値を計算する。 (1) $\lim_{n\to\infty} \frac{\pi}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \...

極限リーマン和積分部分積分定積分
2025/7/23

不定積分 $\int \frac{x^2}{x^2 - x - 6} dx$ を計算する問題です。

不定積分部分分数分解積分
2025/7/23

与えられた関数の2階導関数を求める問題です。 (1) $f(x) = \cos 3x$ (2) $g(x) = e^{-x^2 + 4}$

微分導関数2階導関数三角関数指数関数
2025/7/23

次の不定積分を求めます。 $\int \frac{x^2}{x^3 - x - 6} dx$

不定積分部分分数分解積分計算対数関数arctan
2025/7/23

与えられた6つの関数をそれぞれ微分する問題です。 (3) $\sqrt{x^2 - 5x + 8}$ (4) $\log(x^4 + x^2 + 2)$ (5) $\sin(2x^3 + 1)$ (6...

微分合成関数の微分対数関数三角関数指数関数
2025/7/23

与えられた4つの不定積分を計算します。 (1) $\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$ (2) $\int \frac{1}{1+\sqrt{x^2+1}} dx$...

不定積分置換積分三角関数積分
2025/7/23

曲線 $y = 2e^x$ 上の点Pにおける接線が原点を通るとき、その接線の方程式を求める。

微分接線指数関数方程式
2025/7/23