関数 $y = x^2 - 3x - 2$ において、$x = -2$ における微分係数を求めよ。

解析学微分微分係数導関数関数の微分
2025/4/5

1. 問題の内容

関数 y=x23x2y = x^2 - 3x - 2 において、x=2x = -2 における微分係数を求めよ。

2. 解き方の手順

まず、与えられた関数 y=x23x2y = x^2 - 3x - 2xx で微分して導関数を求めます。
dydx=2x3\frac{dy}{dx} = 2x - 3
次に、導関数に x=2x = -2 を代入して微分係数を計算します。
dydxx=2=2(2)3\frac{dy}{dx}|_{x=-2} = 2(-2) - 3
=43= -4 - 3
=7= -7

3. 最終的な答え

-7

「解析学」の関連問題

## 1. 問題の内容

微分極値最大値最小値関数のグラフ
2025/7/23

与えられた関数 $y = \log \frac{x \sqrt{2x+1}}{(2x-1)^3}$ の導関数を求める問題です。

導関数対数関数微分
2025/7/23

次の3つの不定積分を求める問題です。 (1) $\int \frac{dx}{1 + \cos x + \sin x}$ (2) $\int \sin^3 x \cos^3 x dx$ (3) $\i...

不定積分三角関数置換積分半角の公式
2025/7/23

関数 $f(x) = x^{3x}$ ($x > 0$) を対数微分法を用いて微分せよ。

微分対数微分法逆関数三角関数
2025/7/23

次の極限値を計算する。 (1) $\lim_{n\to\infty} \frac{\pi}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \...

極限リーマン和積分部分積分定積分
2025/7/23

不定積分 $\int \frac{x^2}{x^2 - x - 6} dx$ を計算する問題です。

不定積分部分分数分解積分
2025/7/23

与えられた関数の2階導関数を求める問題です。 (1) $f(x) = \cos 3x$ (2) $g(x) = e^{-x^2 + 4}$

微分導関数2階導関数三角関数指数関数
2025/7/23

次の不定積分を求めます。 $\int \frac{x^2}{x^3 - x - 6} dx$

不定積分部分分数分解積分計算対数関数arctan
2025/7/23

与えられた6つの関数をそれぞれ微分する問題です。 (3) $\sqrt{x^2 - 5x + 8}$ (4) $\log(x^4 + x^2 + 2)$ (5) $\sin(2x^3 + 1)$ (6...

微分合成関数の微分対数関数三角関数指数関数
2025/7/23

与えられた4つの不定積分を計算します。 (1) $\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$ (2) $\int \frac{1}{1+\sqrt{x^2+1}} dx$...

不定積分置換積分三角関数積分
2025/7/23