関数 $f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + 3$ の区間 $0 \le x \le 4$ における最大値と、そのときの $x$ の値を求めます。

解析学微分最大値関数の増減極値
2025/4/5

1. 問題の内容

関数 f(x)=13x332x2+2x+3f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + 3 の区間 0x40 \le x \le 4 における最大値と、そのときの xx の値を求めます。

2. 解き方の手順

まず、与えられた関数 f(x)f(x) を微分して、極値を求めます。
f(x)=x23x+2f'(x) = x^2 - 3x + 2
f(x)=0f'(x) = 0 となる xx を求めます。
x23x+2=0x^2 - 3x + 2 = 0
(x1)(x2)=0(x - 1)(x - 2) = 0
x=1,2x = 1, 2
次に、区間の端点 x=0,4x = 0, 4 と極値を与える x=1,2x = 1, 2 における f(x)f(x) の値を計算します。
f(0)=13(0)332(0)2+2(0)+3=3f(0) = \frac{1}{3}(0)^3 - \frac{3}{2}(0)^2 + 2(0) + 3 = 3
f(1)=13(1)332(1)2+2(1)+3=1332+2+3=29+12+186=236=3.833...f(1) = \frac{1}{3}(1)^3 - \frac{3}{2}(1)^2 + 2(1) + 3 = \frac{1}{3} - \frac{3}{2} + 2 + 3 = \frac{2 - 9 + 12 + 18}{6} = \frac{23}{6} = 3.833...
f(2)=13(2)332(2)2+2(2)+3=83122+4+3=836+7=83+1=113=3.666...f(2) = \frac{1}{3}(2)^3 - \frac{3}{2}(2)^2 + 2(2) + 3 = \frac{8}{3} - \frac{12}{2} + 4 + 3 = \frac{8}{3} - 6 + 7 = \frac{8}{3} + 1 = \frac{11}{3} = 3.666...
f(4)=13(4)332(4)2+2(4)+3=643482+8+3=64324+11=64313=64393=253=8.333...f(4) = \frac{1}{3}(4)^3 - \frac{3}{2}(4)^2 + 2(4) + 3 = \frac{64}{3} - \frac{48}{2} + 8 + 3 = \frac{64}{3} - 24 + 11 = \frac{64}{3} - 13 = \frac{64 - 39}{3} = \frac{25}{3} = 8.333...
これらの値の中で最大なものは f(4)=253f(4) = \frac{25}{3} です。

3. 最終的な答え

最大値: 253\frac{25}{3} (x=4x = 4 のとき)

「解析学」の関連問題

自然数 $n$ に対して、積分 $\int_{-1}^1 (1-x^2)^n dx$ を$\Gamma$関数を使って表し、その値を求める。

積分ガンマ関数ベータ関数置換積分
2025/8/2

与えられた定積分 $\int_{0}^{\infty} \frac{dx}{1+x^2}$ の値を求めます。

定積分積分arctan極限
2025/8/2

問題は、広義積分 $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$ を、積分範囲の端点で特異点を持つため、極限を用いて計算するものです。具体的には、 $\lim_{\ep...

広義積分逆三角関数極限定積分積分
2025/8/2

定積分 $\int_{0}^{1} \log x \, dx$ を計算します。

定積分部分積分ロピタルの定理対数関数
2025/8/2

$0 \le \theta < 2\pi$ のとき、以下の(1)の方程式と(2)の不等式を解きます。 (1) $\sqrt{2} \sin\left(\theta + \frac{\pi}{6}\ri...

三角関数方程式不等式三角関数の合成
2025/8/2

与えられた不等式 $2\cos(2\theta - \frac{\pi}{3}) \leq -\frac{1}{2}$ を解く問題です。

三角関数不等式三角不等式周期性
2025/8/2

$\log e^{-\frac{3}{2}}$ を計算せよ。ただし、$\log$ は自然対数とする。

対数自然対数対数の性質
2025/8/2

与えられた3つの極限値を求める問題です。 (1) $\lim_{x\to 0} \frac{\sqrt{1+2x+4x^2} - \sqrt{1-x-x^2}}{x-3x^2}$ (2) $\lim_...

極限関数の極限有理化三角関数eの定義
2025/8/2

次の6つの定積分を計算します。 (1) $\int_{1}^{3} \sqrt{3-x} \, dx$ (2) $\int_{0}^{\infty} \frac{1}{(x^2+1)(4x^2+1)}...

定積分置換積分部分分数分解部分積分広義積分arctan
2025/8/2

次の和 $S$ を求めます。 $S = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 2^2 + \dots + 9 \cdot 2^8$

級数等比数列和の計算
2025/8/2