与えられた9個の関数をそれぞれ微分せよ。解析学微分導関数合成関数の微分商の微分積の微分対数関数三角関数逆三角関数2025/7/291. 問題の内容与えられた9個の関数をそれぞれ微分せよ。2. 解き方の手順(1) y=13x+2y = \frac{1}{3x+2}y=3x+21 の微分y′=−3(3x+2)2y' = -\frac{3}{(3x+2)^2}y′=−(3x+2)23(2) y=5x+4x2+3y = \frac{5x+4}{x^2+3}y=x2+35x+4 の微分商の微分公式 (uv)′=u′v−uv′v2\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}(vu)′=v2u′v−uv′ を用いる。u=5x+4u = 5x+4u=5x+4, v=x2+3v = x^2+3v=x2+3 とすると、u′=5u' = 5u′=5, v′=2xv' = 2xv′=2xy′=5(x2+3)−(5x+4)(2x)(x2+3)2=5x2+15−10x2−8x(x2+3)2=−5x2−8x+15(x2+3)2y' = \frac{5(x^2+3) - (5x+4)(2x)}{(x^2+3)^2} = \frac{5x^2+15 - 10x^2 - 8x}{(x^2+3)^2} = \frac{-5x^2-8x+15}{(x^2+3)^2}y′=(x2+3)25(x2+3)−(5x+4)(2x)=(x2+3)25x2+15−10x2−8x=(x2+3)2−5x2−8x+15(3) y=1+x23y = \sqrt[3]{1+x^2}y=31+x2 の微分y=(1+x2)13y = (1+x^2)^{\frac{1}{3}}y=(1+x2)31y′=13(1+x2)−23⋅2x=2x3(1+x2)23=2x3(1+x2)23y' = \frac{1}{3}(1+x^2)^{-\frac{2}{3}} \cdot 2x = \frac{2x}{3(1+x^2)^{\frac{2}{3}}} = \frac{2x}{3\sqrt[3]{(1+x^2)^2}}y′=31(1+x2)−32⋅2x=3(1+x2)322x=33(1+x2)22x(4) y=152x+1y = \frac{1}{5\sqrt{2x+1}}y=52x+11 の微分y=15(2x+1)−12y = \frac{1}{5}(2x+1)^{-\frac{1}{2}}y=51(2x+1)−21y′=15⋅(−12)(2x+1)−32⋅2=−15(2x+1)32=−15(2x+1)3y' = \frac{1}{5} \cdot (-\frac{1}{2}) (2x+1)^{-\frac{3}{2}} \cdot 2 = -\frac{1}{5(2x+1)^{\frac{3}{2}}} = -\frac{1}{5\sqrt{(2x+1)^3}}y′=51⋅(−21)(2x+1)−23⋅2=−5(2x+1)231=−5(2x+1)31(5) y=xx2+1y = \frac{x}{\sqrt{x^2+1}}y=x2+1x の微分y′=x2+1−x⋅12(x2+1)−12⋅2xx2+1=x2+1−x2x2+1x2+1=x2+1−x2x2+1x2+1=1(x2+1)x2+1=1(x2+1)32y' = \frac{\sqrt{x^2+1} - x \cdot \frac{1}{2}(x^2+1)^{-\frac{1}{2}} \cdot 2x}{x^2+1} = \frac{\sqrt{x^2+1} - \frac{x^2}{\sqrt{x^2+1}}}{x^2+1} = \frac{\frac{x^2+1-x^2}{\sqrt{x^2+1}}}{x^2+1} = \frac{1}{(x^2+1)\sqrt{x^2+1}} = \frac{1}{(x^2+1)^{\frac{3}{2}}}y′=x2+1x2+1−x⋅21(x2+1)−21⋅2x=x2+1x2+1−x2+1x2=x2+1x2+1x2+1−x2=(x2+1)x2+11=(x2+1)231(6) y=cosx2x−1y = \frac{\cos x}{2x-1}y=2x−1cosx の微分y′=−sinx(2x−1)−cosx⋅2(2x−1)2=−(2x−1)sinx−2cosx(2x−1)2y' = \frac{-\sin x (2x-1) - \cos x \cdot 2}{(2x-1)^2} = \frac{-(2x-1)\sin x - 2\cos x}{(2x-1)^2}y′=(2x−1)2−sinx(2x−1)−cosx⋅2=(2x−1)2−(2x−1)sinx−2cosx(7) y=log(x3+1)y = \log(x^3+1)y=log(x3+1) の微分y′=3x2x3+1y' = \frac{3x^2}{x^3+1}y′=x3+13x2(8) y=exsin3xy = e^x \sin 3xy=exsin3x の微分積の微分公式を用いる。y′=exsin3x+ex⋅3cos3x=ex(sin3x+3cos3x)y' = e^x \sin 3x + e^x \cdot 3\cos 3x = e^x (\sin 3x + 3\cos 3x)y′=exsin3x+ex⋅3cos3x=ex(sin3x+3cos3x)(9) y=tanxtan−1xy = \tan x \tan^{-1} xy=tanxtan−1x の微分y′=1cos2xtan−1x+tanx⋅11+x2=tan−1xcos2x+tanx1+x2y' = \frac{1}{\cos^2 x} \tan^{-1} x + \tan x \cdot \frac{1}{1+x^2} = \frac{\tan^{-1} x}{\cos^2 x} + \frac{\tan x}{1+x^2}y′=cos2x1tan−1x+tanx⋅1+x21=cos2xtan−1x+1+x2tanx3. 最終的な答え(1) y′=−3(3x+2)2y' = -\frac{3}{(3x+2)^2}y′=−(3x+2)23(2) y′=−5x2−8x+15(x2+3)2y' = \frac{-5x^2-8x+15}{(x^2+3)^2}y′=(x2+3)2−5x2−8x+15(3) y′=2x3(1+x2)23y' = \frac{2x}{3\sqrt[3]{(1+x^2)^2}}y′=33(1+x2)22x(4) y′=−15(2x+1)3y' = -\frac{1}{5\sqrt{(2x+1)^3}}y′=−5(2x+1)31(5) y′=1(x2+1)32y' = \frac{1}{(x^2+1)^{\frac{3}{2}}}y′=(x2+1)231(6) y′=−(2x−1)sinx−2cosx(2x−1)2y' = \frac{-(2x-1)\sin x - 2\cos x}{(2x-1)^2}y′=(2x−1)2−(2x−1)sinx−2cosx(7) y′=3x2x3+1y' = \frac{3x^2}{x^3+1}y′=x3+13x2(8) y′=ex(sin3x+3cos3x)y' = e^x (\sin 3x + 3\cos 3x)y′=ex(sin3x+3cos3x)(9) y′=tan−1xcos2x+tanx1+x2y' = \frac{\tan^{-1} x}{\cos^2 x} + \frac{\tan x}{1+x^2}y′=cos2xtan−1x+1+x2tanx