与えられた等式を解いて、$p^2$の値を求めます。等式は以下の通りです。 $\frac{1}{2} \times 4 \times (4-p^2) = \frac{1}{2} \times 4 \times \{-\frac{1}{8}p^2 - (-2)\}$

代数学方程式二次方程式数式処理
2025/7/30

1. 問題の内容

与えられた等式を解いて、p2p^2の値を求めます。等式は以下の通りです。
12×4×(4p2)=12×4×{18p2(2)}\frac{1}{2} \times 4 \times (4-p^2) = \frac{1}{2} \times 4 \times \{-\frac{1}{8}p^2 - (-2)\}

2. 解き方の手順

まず、等式の両辺を12×4=2\frac{1}{2} \times 4 = 2で割ります。
4p2=18p2(2)4 - p^2 = -\frac{1}{8}p^2 - (-2)
4p2=18p2+24 - p^2 = -\frac{1}{8}p^2 + 2
次に、p2p^2の項を一方に、定数項をもう一方に集めます。両辺にp2p^2を足し、両辺から2を引きます。
4p2+p22=18p2+2+p224 - p^2 + p^2 - 2 = -\frac{1}{8}p^2 + 2 + p^2 - 2
2=18p2+p22 = -\frac{1}{8}p^2 + p^2
2=(118)p22 = (1 - \frac{1}{8})p^2
2=78p22 = \frac{7}{8}p^2
次に、両辺に87\frac{8}{7}を掛けます。
2×87=78p2×872 \times \frac{8}{7} = \frac{7}{8}p^2 \times \frac{8}{7}
167=p2\frac{16}{7} = p^2

3. 最終的な答え

p2=167p^2 = \frac{16}{7}

「代数学」の関連問題

複素数 $z$ が与えられた等式 $|iz+3| = |2z-6|$ を満たすとき、以下の問いに答える問題です。 (1) 等式を満たす点 $z$ 全体が表す図形を求める。 (2) $z - \over...

複素数絶対値複素平面距離最大値
2025/8/2

問題は、二次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答えるものです。 (1) 頂点の $y$ 座標を求め、その最大値を求める。 (2) $-1 \le x \l...

二次関数最大値最小値平方完成場合分け
2025/8/2

行列 $A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ と $B = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{...

行列逆行列行列式
2025/8/2

与えられた方程式 $-4(x+1)^2 - 3 = 0$ を解き、$x$ の値を求めます。

二次方程式虚数解複素数方程式
2025/8/2

与えられた2次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答える問題です。 (1) 放物線 C の頂点の y 座標とその最大値を求める。 (2) $-1 \le x...

二次関数平方完成最大値最小値
2025/8/2

与えられたベクトル $c$ と行列 $A$, $B$ に対して、以下の行列の積を計算します。計算不能の場合は「計算不能」と答えます。 (i) $AB$ (ii) $Bc$ (iii) ${}^tAc$...

行列行列の積転置行列ベクトルの積
2025/8/2

問題は、与えられた数式を計算して簡単にすることです。 具体的には、 (1) $(-6x+3y)+(-7x-4y)$ を計算する必要があります。

式の計算同類項一次式
2025/8/2

与えられた2つの多項式の足し算をしなさい。 $(-6x+3y)+(-7x-4y)$

多項式加法同類項
2025/8/2

与えられた2つの2次関数について、指定された条件を満たす定数 $k$ の値の範囲を求める問題です。 (1) $y = x^2 - 4x + 2k - 2$ のグラフが $x$ 軸と共有点を持たない。 ...

二次関数判別式不等式二次不等式
2025/8/2

与えられた4つの方程式を解く問題です。 (1) $\frac{1}{3}x + 5 = -\frac{1}{6}x + 3$ (2) $\frac{x+2}{4} = \frac{x-5}{6}$ (...

方程式一次方程式
2025/8/2