問題1は、1冊120gのノート$a$冊分の重さが800g以下であるという関係を不等号で表す問題です。選択肢の中から正しい不等号を選びます。 問題2は、$a < b$のとき、$-5a$と$-5b$の大小関係を不等号で表す問題です。

代数学不等式一次不等式不等式の性質
2025/7/30

1. 問題の内容

問題1は、1冊120gのノートaa冊分の重さが800g以下であるという関係を不等号で表す問題です。選択肢の中から正しい不等号を選びます。
問題2は、a<ba < bのとき、5a-5a5b-5bの大小関係を不等号で表す問題です。

2. 解き方の手順

問題1:
ノートaa冊分の重さは120a120a gです。これが800g以下であるということは、120a120aが800以下であることを意味します。したがって、120a800120a \le 800となります。
問題2:
a<ba < bという不等式の両辺に-5をかけます。不等式に負の数をかけると、不等号の向きが変わります。
したがって、5a>5b-5a > -5bとなります。

3. 最終的な答え

問題1:ウ
問題2:イ

「代数学」の関連問題

複素数 $z$ が与えられた等式 $|iz+3| = |2z-6|$ を満たすとき、以下の問いに答える問題です。 (1) 等式を満たす点 $z$ 全体が表す図形を求める。 (2) $z - \over...

複素数絶対値複素平面距離最大値
2025/8/2

問題は、二次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答えるものです。 (1) 頂点の $y$ 座標を求め、その最大値を求める。 (2) $-1 \le x \l...

二次関数最大値最小値平方完成場合分け
2025/8/2

行列 $A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ と $B = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{...

行列逆行列行列式
2025/8/2

与えられた方程式 $-4(x+1)^2 - 3 = 0$ を解き、$x$ の値を求めます。

二次方程式虚数解複素数方程式
2025/8/2

与えられた2次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答える問題です。 (1) 放物線 C の頂点の y 座標とその最大値を求める。 (2) $-1 \le x...

二次関数平方完成最大値最小値
2025/8/2

与えられたベクトル $c$ と行列 $A$, $B$ に対して、以下の行列の積を計算します。計算不能の場合は「計算不能」と答えます。 (i) $AB$ (ii) $Bc$ (iii) ${}^tAc$...

行列行列の積転置行列ベクトルの積
2025/8/2

問題は、与えられた数式を計算して簡単にすることです。 具体的には、 (1) $(-6x+3y)+(-7x-4y)$ を計算する必要があります。

式の計算同類項一次式
2025/8/2

与えられた2つの多項式の足し算をしなさい。 $(-6x+3y)+(-7x-4y)$

多項式加法同類項
2025/8/2

与えられた2つの2次関数について、指定された条件を満たす定数 $k$ の値の範囲を求める問題です。 (1) $y = x^2 - 4x + 2k - 2$ のグラフが $x$ 軸と共有点を持たない。 ...

二次関数判別式不等式二次不等式
2025/8/2

与えられた4つの方程式を解く問題です。 (1) $\frac{1}{3}x + 5 = -\frac{1}{6}x + 3$ (2) $\frac{x+2}{4} = \frac{x-5}{6}$ (...

方程式一次方程式
2025/8/2