与えられた4つの二変数関数 $F(x, y)$, $G(x, y)$, $H(x, y)$, $K(x, y)$ それぞれについて、$x$ と $y$ に関する偏導関数を計算する。解析学偏微分多変数関数2025/7/301. 問題の内容与えられた4つの二変数関数 F(x,y)F(x, y)F(x,y), G(x,y)G(x, y)G(x,y), H(x,y)H(x, y)H(x,y), K(x,y)K(x, y)K(x,y) それぞれについて、xxx と yyy に関する偏導関数を計算する。2. 解き方の手順(1) F(x,y)=11+2x2+y2F(x, y) = \frac{1}{1 + 2x^2 + y^2}F(x,y)=1+2x2+y21∂F∂x=∂∂x(1+2x2+y2)−1=−(1+2x2+y2)−2⋅(4x)=−4x(1+2x2+y2)2\frac{\partial F}{\partial x} = \frac{\partial}{\partial x} (1 + 2x^2 + y^2)^{-1} = -(1 + 2x^2 + y^2)^{-2} \cdot (4x) = \frac{-4x}{(1 + 2x^2 + y^2)^2}∂x∂F=∂x∂(1+2x2+y2)−1=−(1+2x2+y2)−2⋅(4x)=(1+2x2+y2)2−4x∂F∂y=∂∂y(1+2x2+y2)−1=−(1+2x2+y2)−2⋅(2y)=−2y(1+2x2+y2)2\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} (1 + 2x^2 + y^2)^{-1} = -(1 + 2x^2 + y^2)^{-2} \cdot (2y) = \frac{-2y}{(1 + 2x^2 + y^2)^2}∂y∂F=∂y∂(1+2x2+y2)−1=−(1+2x2+y2)−2⋅(2y)=(1+2x2+y2)2−2y(2) G(x,y)=log(x+y)G(x, y) = \log(x + y)G(x,y)=log(x+y)∂G∂x=∂∂xlog(x+y)=1x+y⋅1=1x+y\frac{\partial G}{\partial x} = \frac{\partial}{\partial x} \log(x + y) = \frac{1}{x + y} \cdot 1 = \frac{1}{x + y}∂x∂G=∂x∂log(x+y)=x+y1⋅1=x+y1∂G∂y=∂∂ylog(x+y)=1x+y⋅1=1x+y\frac{\partial G}{\partial y} = \frac{\partial}{\partial y} \log(x + y) = \frac{1}{x + y} \cdot 1 = \frac{1}{x + y}∂y∂G=∂y∂log(x+y)=x+y1⋅1=x+y1(3) H(x,y)=ex−yH(x, y) = e^{x - y}H(x,y)=ex−y∂H∂x=∂∂xex−y=ex−y⋅1=ex−y\frac{\partial H}{\partial x} = \frac{\partial}{\partial x} e^{x - y} = e^{x - y} \cdot 1 = e^{x - y}∂x∂H=∂x∂ex−y=ex−y⋅1=ex−y∂H∂y=∂∂yex−y=ex−y⋅(−1)=−ex−y\frac{\partial H}{\partial y} = \frac{\partial}{\partial y} e^{x - y} = e^{x - y} \cdot (-1) = -e^{x - y}∂y∂H=∂y∂ex−y=ex−y⋅(−1)=−ex−y(4) K(x,y)=arctan(yx)K(x, y) = \arctan(\frac{y}{x})K(x,y)=arctan(xy)∂K∂x=∂∂xarctan(yx)=11+(yx)2⋅(−yx2)=11+y2x2⋅(−yx2)=x2x2+y2⋅(−yx2)=−yx2+y2\frac{\partial K}{\partial x} = \frac{\partial}{\partial x} \arctan(\frac{y}{x}) = \frac{1}{1 + (\frac{y}{x})^2} \cdot (-\frac{y}{x^2}) = \frac{1}{1 + \frac{y^2}{x^2}} \cdot (-\frac{y}{x^2}) = \frac{x^2}{x^2 + y^2} \cdot (-\frac{y}{x^2}) = \frac{-y}{x^2 + y^2}∂x∂K=∂x∂arctan(xy)=1+(xy)21⋅(−x2y)=1+x2y21⋅(−x2y)=x2+y2x2⋅(−x2y)=x2+y2−y∂K∂y=∂∂yarctan(yx)=11+(yx)2⋅(1x)=11+y2x2⋅(1x)=x2x2+y2⋅(1x)=xx2+y2\frac{\partial K}{\partial y} = \frac{\partial}{\partial y} \arctan(\frac{y}{x}) = \frac{1}{1 + (\frac{y}{x})^2} \cdot (\frac{1}{x}) = \frac{1}{1 + \frac{y^2}{x^2}} \cdot (\frac{1}{x}) = \frac{x^2}{x^2 + y^2} \cdot (\frac{1}{x}) = \frac{x}{x^2 + y^2}∂y∂K=∂y∂arctan(xy)=1+(xy)21⋅(x1)=1+x2y21⋅(x1)=x2+y2x2⋅(x1)=x2+y2x3. 最終的な答え(1) ∂F∂x=−4x(1+2x2+y2)2\frac{\partial F}{\partial x} = \frac{-4x}{(1 + 2x^2 + y^2)^2}∂x∂F=(1+2x2+y2)2−4x, ∂F∂y=−2y(1+2x2+y2)2\frac{\partial F}{\partial y} = \frac{-2y}{(1 + 2x^2 + y^2)^2}∂y∂F=(1+2x2+y2)2−2y(2) ∂G∂x=1x+y\frac{\partial G}{\partial x} = \frac{1}{x + y}∂x∂G=x+y1, ∂G∂y=1x+y\frac{\partial G}{\partial y} = \frac{1}{x + y}∂y∂G=x+y1(3) ∂H∂x=ex−y\frac{\partial H}{\partial x} = e^{x - y}∂x∂H=ex−y, ∂H∂y=−ex−y\frac{\partial H}{\partial y} = -e^{x - y}∂y∂H=−ex−y(4) ∂K∂x=−yx2+y2\frac{\partial K}{\partial x} = \frac{-y}{x^2 + y^2}∂x∂K=x2+y2−y, ∂K∂y=xx2+y2\frac{\partial K}{\partial y} = \frac{x}{x^2 + y^2}∂y∂K=x2+y2x