曲線 $C: x = \sin(\pi(t^2 + 1)), y = \cos(\pi(t^2 - 1))$ ($0 \le t \le 2$) の長さを求める。解析学曲線弧長積分パラメータ表示2025/8/21. 問題の内容曲線 C:x=sin(π(t2+1)),y=cos(π(t2−1))C: x = \sin(\pi(t^2 + 1)), y = \cos(\pi(t^2 - 1))C:x=sin(π(t2+1)),y=cos(π(t2−1)) (0≤t≤20 \le t \le 20≤t≤2) の長さを求める。2. 解き方の手順まず、xxxとyyyをtttで微分する。x(t)=sin(π(t2+1))=sin(πt2+π)x(t) = \sin(\pi(t^2 + 1)) = \sin(\pi t^2 + \pi)x(t)=sin(π(t2+1))=sin(πt2+π)x′(t)=cos(πt2+π)⋅(2πt)=−2πtcos(πt2)x'(t) = \cos(\pi t^2 + \pi) \cdot (2\pi t) = -2\pi t \cos(\pi t^2)x′(t)=cos(πt2+π)⋅(2πt)=−2πtcos(πt2)y(t)=cos(π(t2−1))=cos(πt2−π)y(t) = \cos(\pi(t^2 - 1)) = \cos(\pi t^2 - \pi)y(t)=cos(π(t2−1))=cos(πt2−π)y′(t)=−sin(πt2−π)⋅(2πt)=2πtsin(πt2)y'(t) = -\sin(\pi t^2 - \pi) \cdot (2\pi t) = 2\pi t \sin(\pi t^2)y′(t)=−sin(πt2−π)⋅(2πt)=2πtsin(πt2)次に、曲線 CCC の長さ lll は、次の式で与えられる。l=∫02(x′(t))2+(y′(t))2dtl = \int_{0}^{2} \sqrt{(x'(t))^2 + (y'(t))^2} dtl=∫02(x′(t))2+(y′(t))2dt(x′(t))2=(−2πtcos(πt2))2=4π2t2cos2(πt2)(x'(t))^2 = (-2\pi t \cos(\pi t^2))^2 = 4\pi^2 t^2 \cos^2(\pi t^2)(x′(t))2=(−2πtcos(πt2))2=4π2t2cos2(πt2)(y′(t))2=(2πtsin(πt2))2=4π2t2sin2(πt2)(y'(t))^2 = (2\pi t \sin(\pi t^2))^2 = 4\pi^2 t^2 \sin^2(\pi t^2)(y′(t))2=(2πtsin(πt2))2=4π2t2sin2(πt2)(x′(t))2+(y′(t))2=4π2t2cos2(πt2)+4π2t2sin2(πt2)=4π2t2(cos2(πt2)+sin2(πt2))(x'(t))^2 + (y'(t))^2 = 4\pi^2 t^2 \cos^2(\pi t^2) + 4\pi^2 t^2 \sin^2(\pi t^2) = 4\pi^2 t^2 (\cos^2(\pi t^2) + \sin^2(\pi t^2))(x′(t))2+(y′(t))2=4π2t2cos2(πt2)+4π2t2sin2(πt2)=4π2t2(cos2(πt2)+sin2(πt2))=4π2t2= 4\pi^2 t^2=4π2t2(x′(t))2+(y′(t))2=4π2t2=2π∣t∣\sqrt{(x'(t))^2 + (y'(t))^2} = \sqrt{4\pi^2 t^2} = 2\pi |t|(x′(t))2+(y′(t))2=4π2t2=2π∣t∣区間 [0,2][0, 2][0,2] では t≥0t \ge 0t≥0 なので ∣t∣=t|t| = t∣t∣=t となる。l=∫022πtdt=2π∫02tdt=2π[12t2]02=2π(12(22)−12(02))=2π(12⋅4)=4πl = \int_{0}^{2} 2\pi t dt = 2\pi \int_{0}^{2} t dt = 2\pi \left[ \frac{1}{2} t^2 \right]_{0}^{2} = 2\pi \left( \frac{1}{2} (2^2) - \frac{1}{2} (0^2) \right) = 2\pi \left( \frac{1}{2} \cdot 4 \right) = 4\pil=∫022πtdt=2π∫02tdt=2π[21t2]02=2π(21(22)−21(02))=2π(21⋅4)=4π3. 最終的な答え4π4\pi4π