与えられた指数方程式 $2^x = \frac{1}{64}$ を解き、$x$ の値を求める問題です。

代数学指数方程式指数法則方程式の解法
2025/7/30

1. 問題の内容

与えられた指数方程式 2x=1642^x = \frac{1}{64} を解き、xx の値を求める問題です。

2. 解き方の手順

まず、右辺の 164\frac{1}{64} を2の累乗の形で表します。
64=2664 = 2^6 であるため、164=126=26\frac{1}{64} = \frac{1}{2^6} = 2^{-6} となります。
したがって、与えられた方程式は以下のように書き換えられます。
2x=262^x = 2^{-6}
指数関数において、底が同じであれば指数部分が等しくなるため、x=6x = -6 となります。

3. 最終的な答え

x=6x = -6

「代数学」の関連問題

与えられた3つの2次関数について、グラフを描き、軸と頂点を答える問題です。

二次関数グラフ放物線頂点
2025/7/31

式 $2x(x-2)+(x+2)^2$ を計算して簡単にせよ。

式の展開多項式
2025/7/31

与えられた式 $(x-1)(x-2)(x+2)(x+4) + 2x^2$ を因数分解し、選択肢の中から正しいものを選択する問題です。

因数分解多項式二次方程式
2025/7/31

選択肢の中から、二重根号を外すことができるものを選ぶ問題です。選択肢は以下の3つです。 1. $\sqrt{15 + 6\sqrt{6}}$

二重根号根号平方根
2025/7/31

次の4つの計算問題を解きます。 (1) $-8xy(x+y) - 9xy(7x-y)$ (2) $-a(5a+2b) - (10ab^2 + 12a^2b^2) \div (-2ab)$ (3) $\...

式の計算展開同類項分数式
2025/7/31

問題は、$-3.14i$ を分数で表すことです。ここで、$i$ は虚数単位です。

複素数分数虚数
2025/7/31

$x = \frac{1}{3 - \sqrt{5}}$ のとき、$5a^2 + 8ab + 16b^2$ の値を求めよ。ただし、$a$ は $x$ の整数部分、$b$ は $x$ の小数部分とする。

式の計算平方根有理化整数部分と小数部分
2025/7/31

与えられた式 $a^2(b-c) + b^2(c-a) + c^2(a-b)$ を因数分解する問題です。

因数分解多項式
2025/7/31

(1) 行列式 $\begin{vmatrix} a & a^2 & b+c \\ b & b^2 & c+a \\ c & c^2 & a+b \end{vmatrix}$ を因数分解する。 (2)...

行列式因数分解方程式行列
2025/7/31

与えられた式 $(x-2)(x+1)^2(x+4)$ を計算しなさい。

多項式の展開因数分解式の計算
2025/7/31