$\sum_{k=1}^{n} (3k-1)^2$ を計算せよ。代数学シグマ数列展開公式2025/7/311. 問題の内容∑k=1n(3k−1)2\sum_{k=1}^{n} (3k-1)^2∑k=1n(3k−1)2 を計算せよ。2. 解き方の手順まず、(3k−1)2(3k-1)^2(3k−1)2を展開します。(3k−1)2=9k2−6k+1(3k-1)^2 = 9k^2 - 6k + 1(3k−1)2=9k2−6k+1次に、シグマの性質を利用して、それぞれの項に分解します。∑k=1n(3k−1)2=∑k=1n(9k2−6k+1)=9∑k=1nk2−6∑k=1nk+∑k=1n1\sum_{k=1}^{n} (3k-1)^2 = \sum_{k=1}^{n} (9k^2 - 6k + 1) = 9\sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(3k−1)2=∑k=1n(9k2−6k+1)=9∑k=1nk2−6∑k=1nk+∑k=1n1∑k=1nk2\sum_{k=1}^{n} k^2∑k=1nk2, ∑k=1nk\sum_{k=1}^{n} k∑k=1nk, ∑k=1n1\sum_{k=1}^{n} 1∑k=1n1 の公式を使います。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入します。9∑k=1nk2−6∑k=1nk+∑k=1n1=9n(n+1)(2n+1)6−6n(n+1)2+n9\sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 9\frac{n(n+1)(2n+1)}{6} - 6\frac{n(n+1)}{2} + n9∑k=1nk2−6∑k=1nk+∑k=1n1=96n(n+1)(2n+1)−62n(n+1)+n=3n(n+1)(2n+1)2−3n(n+1)+n= \frac{3n(n+1)(2n+1)}{2} - 3n(n+1) + n=23n(n+1)(2n+1)−3n(n+1)+n=3n(n+1)(2n+1)−6n(n+1)+2n2= \frac{3n(n+1)(2n+1) - 6n(n+1) + 2n}{2}=23n(n+1)(2n+1)−6n(n+1)+2n=n[3(n+1)(2n+1)−6(n+1)+2]2= \frac{n[3(n+1)(2n+1) - 6(n+1) + 2]}{2}=2n[3(n+1)(2n+1)−6(n+1)+2]=n[3(2n2+3n+1)−6n−6+2]2= \frac{n[3(2n^2+3n+1) - 6n - 6 + 2]}{2}=2n[3(2n2+3n+1)−6n−6+2]=n[6n2+9n+3−6n−4]2= \frac{n[6n^2 + 9n + 3 - 6n - 4]}{2}=2n[6n2+9n+3−6n−4]=n[6n2+3n−1]2= \frac{n[6n^2 + 3n - 1]}{2}=2n[6n2+3n−1]=6n3+3n2−n2= \frac{6n^3 + 3n^2 - n}{2}=26n3+3n2−n3. 最終的な答え6n3+3n2−n2\frac{6n^3 + 3n^2 - n}{2}26n3+3n2−n