$x = 2\sqrt{5}$ のとき、$(x+4)(x-9) - (x+6)(x-6)$ の値を求めます。

代数学式の計算展開平方根
2025/7/31

1. 問題の内容

x=25x = 2\sqrt{5} のとき、(x+4)(x9)(x+6)(x6)(x+4)(x-9) - (x+6)(x-6) の値を求めます。

2. 解き方の手順

まず、与えられた式を展開します。
(x+4)(x9)(x+6)(x6)=(x29x+4x36)(x236)(x+4)(x-9) - (x+6)(x-6) = (x^2 -9x + 4x -36) - (x^2 -36)
=x25x36x2+36= x^2 -5x - 36 - x^2 + 36
=5x= -5x
次に、 x=25x = 2\sqrt{5} を代入します。
5x=5(25)-5x = -5(2\sqrt{5})
=105= -10\sqrt{5}

3. 最終的な答え

105-10\sqrt{5}

「代数学」の関連問題

$x$ の方程式 $|x^2 - 1| = k$ の実数解の個数を、$k$ の値によって分類せよ。

絶対値二次関数実数解グラフ
2025/8/1

問題1は、(1)の式 $(x+y+z)^3$ を展開し、(2)から(5)の式を因数分解する問題です。 問題2は、与えられた式の展開式において、指定された項の係数を求める問題です。 (1) $(x-3)...

式の展開因数分解二項定理多項式の係数
2025/8/1

ある中学校の吹奏楽部に1年生から3年生まで合わせて43人の生徒が所属しています。1年生は3年生の1.5倍の人数で、2年生は1年生より少なく3年生より多いです。このとき、2年生の人数を求める問題です。

連立方程式不等式文章問題数論
2025/8/1

X, Y, Zの3人が合計15冊の本を借りた。Xが借りた本の冊数はYの2倍以上であり、Zが借りた本の冊数はXの2倍以上かつYの5倍以下である。このとき、Zが借りた本の冊数を求める。

不等式連立方程式整数解
2025/8/1

ある展示会に3日間で合わせて33000人が来場しました。2日目の来場者は1日目より5000人少なく、3日目は2日目より2000人少なかったとします。このとき、1日目の来場者数を求める問題です。

一次方程式文章問題数量関係
2025/8/1

AとBの2人がじゃんけんをします。勝つと3点、負けると-2点です。Aが勝った回数はBが勝った回数より3回多く、Aの得点は14点でした。AとBがそれぞれ勝った回数を求めます。

連立方程式文章問題
2025/8/1

2次方程式 $ax^2 + (a-2)x - 5a - 1 = 0$ の一つの解が3であるとき、$a$ の値と他の解を求めます。

二次方程式解の公式因数分解方程式
2025/8/1

問題は、$(x-2)^3$ を展開することです。

展開二項定理多項式
2025/8/1

与えられた置換の符号を求めます。 (1) 置換 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 8 & 7 &...

置換符号互換転倒数
2025/8/1

あるクラスの生徒20人が5点満点の小テストを受けました。生徒の点数と人数が表で与えられており、3点の生徒数が $x$ 人、5点の生徒数が $y$ 人です。全体の平均点が3.5点のとき、$x$ と $y...

連立方程式平均方程式算数
2025/8/1