関数 $y = (x-1)(x^2+1)(2x-1)$ を微分せよ。解析学微分関数の微分積の微分公式2025/7/311. 問題の内容関数 y=(x−1)(x2+1)(2x−1)y = (x-1)(x^2+1)(2x-1)y=(x−1)(x2+1)(2x−1) を微分せよ。2. 解き方の手順積の微分公式を使う。まず、u=x−1u = x-1u=x−1, v=x2+1v = x^2+1v=x2+1, w=2x−1w = 2x-1w=2x−1 とおくと、y=uvwy = uvwy=uvw である。積の微分公式は、dydx=dudxvw+udvdxw+uvdwdx\frac{dy}{dx} = \frac{du}{dx}vw + u\frac{dv}{dx}w + uv\frac{dw}{dx}dxdy=dxduvw+udxdvw+uvdxdwである。それぞれの微分を計算する。dudx=ddx(x−1)=1\frac{du}{dx} = \frac{d}{dx}(x-1) = 1dxdu=dxd(x−1)=1dvdx=ddx(x2+1)=2x\frac{dv}{dx} = \frac{d}{dx}(x^2+1) = 2xdxdv=dxd(x2+1)=2xdwdx=ddx(2x−1)=2\frac{dw}{dx} = \frac{d}{dx}(2x-1) = 2dxdw=dxd(2x−1)=2したがって、dydx=1(x2+1)(2x−1)+(x−1)(2x)(2x−1)+(x−1)(x2+1)2\frac{dy}{dx} = 1(x^2+1)(2x-1) + (x-1)(2x)(2x-1) + (x-1)(x^2+1)2dxdy=1(x2+1)(2x−1)+(x−1)(2x)(2x−1)+(x−1)(x2+1)2=(x2+1)(2x−1)+2x(x−1)(2x−1)+2(x−1)(x2+1)= (x^2+1)(2x-1) + 2x(x-1)(2x-1) + 2(x-1)(x^2+1)=(x2+1)(2x−1)+2x(x−1)(2x−1)+2(x−1)(x2+1)=(2x3−x2+2x−1)+2x(2x2−3x+1)+2(x3−x2+x−1)= (2x^3 - x^2 + 2x - 1) + 2x(2x^2 -3x + 1) + 2(x^3 - x^2 + x - 1)=(2x3−x2+2x−1)+2x(2x2−3x+1)+2(x3−x2+x−1)=2x3−x2+2x−1+4x3−6x2+2x+2x3−2x2+2x−2= 2x^3 - x^2 + 2x - 1 + 4x^3 - 6x^2 + 2x + 2x^3 - 2x^2 + 2x - 2=2x3−x2+2x−1+4x3−6x2+2x+2x3−2x2+2x−2=(2+4+2)x3+(−1−6−2)x2+(2+2+2)x+(−1−2)= (2+4+2)x^3 + (-1-6-2)x^2 + (2+2+2)x + (-1-2)=(2+4+2)x3+(−1−6−2)x2+(2+2+2)x+(−1−2)=8x3−9x2+6x−3= 8x^3 - 9x^2 + 6x - 3=8x3−9x2+6x−33. 最終的な答え8x3−9x2+6x−38x^3 - 9x^2 + 6x - 38x3−9x2+6x−3