関数 $y = \frac{\log x}{x^2}$ を微分した $y'$ を求める問題です。

解析学微分対数関数商の微分公式
2025/7/31

1. 問題の内容

関数 y=logxx2y = \frac{\log x}{x^2} を微分した yy' を求める問題です。

2. 解き方の手順

商の微分公式を使います。商の微分公式は、関数 y=u(x)v(x)y = \frac{u(x)}{v(x)} について、
y=u(x)v(x)u(x)v(x)v(x)2y' = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}
で与えられます。
この問題では、u(x)=logxu(x) = \log x および v(x)=x2v(x) = x^2 とおきます。
u(x)=1xu'(x) = \frac{1}{x} であり、v(x)=2xv'(x) = 2x です。
これらの値を商の微分公式に代入すると、
y=1xx2logx2x(x2)2=x2xlogxx4=x(12logx)x4=12logxx3y' = \frac{\frac{1}{x} \cdot x^2 - \log x \cdot 2x}{(x^2)^2} = \frac{x - 2x \log x}{x^4} = \frac{x(1 - 2 \log x)}{x^4} = \frac{1 - 2 \log x}{x^3}
となります。

3. 最終的な答え

y=12logxx3y' = \frac{1 - 2 \log x}{x^3}

「解析学」の関連問題

次の関数の極大値、極小値と、そのときの $x$ の値を求めます。 (1) $y = \frac{x}{x^2 + 1}$ (2) $y = \sin 2x + 2 \cos x \quad (0 \l...

微分極値最大値最小値三角関数
2025/8/2

関数 $y = \frac{3}{4}x^4 - x^3 - 3x^2$ の極値を求め、グラフを描く問題です。

微分極値関数のグラフ三次関数
2025/8/1

与えられた逆三角関数の値を求める問題です。 (1) $arcsin \frac{1}{\sqrt{2}}$ (2) $arccos (-\frac{\sqrt{3}}{2})$ (3) $arctan...

逆三角関数arcsinarccosarctan三角関数
2025/8/1

放物線 $y = x^2 - x$ と直線 $y = mx$ で囲まれた図形の面積 $S$ が $x$ 軸で 2 等分されるとき、定数 $m$ の値を求める問題です。ただし、$m > 0$ とします。

積分面積放物線直線
2025/8/1

放物線 $y = x^2 - 2x - 1$ と直線 $y = x - 1$ で囲まれた図形の面積 $S$ を求める問題です。

定積分面積放物線直線
2025/8/1

(1) 2つの曲線 $y = x^3 + ax$ と $y = bx^2 + c$ がともに点 $(-1, 0)$ を通り、その点で共通の接線を持つとき、定数 $a, b, c$ の値を求め、その接点...

微分接線曲線導関数
2025/8/1

放物線 $y = x^2 - x$ と直線 $y = mx$ で囲まれた図形の面積 $S$ が、$x$ 軸で2等分されるとき、定数 $m$ の値を求める問題です。ただし、$m > 0$ とします。

積分面積放物線直線
2025/8/1

関数 $f(x) = x^3 - ax^2 + b$ について、$f(1) = -3$ , $f(-1) = -5$ が成り立つとき、以下の問いに答える。 (1) $a, b$ の値をそれぞれ求める。...

関数の微分極値接線積分三次関数
2025/8/1

与えられた級数 $S$ の和を求める問題です。 $S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{...

級数等比数列無限級数
2025/8/1

関数 $y = \frac{x^3}{3} + \frac{1}{4x}$ ($1 \leq x \leq 2$) の曲線長 $l$ を求める問題です。$l$ は $\frac{(\text{ア})}...

曲線長積分微分
2025/8/1