関数 $y = \frac{\log(x^2 + x)}{\log(x+1)}$ を微分せよ。解析学微分対数関数導関数2025/7/311. 問題の内容関数 y=log(x2+x)log(x+1)y = \frac{\log(x^2 + x)}{\log(x+1)}y=log(x+1)log(x2+x) を微分せよ。2. 解き方の手順y=log(x(x+1))log(x+1)=logx+log(x+1)log(x+1)=logxlog(x+1)+1y = \frac{\log(x(x+1))}{\log(x+1)} = \frac{\log x + \log (x+1)}{\log(x+1)} = \frac{\log x}{\log(x+1)} + 1y=log(x+1)log(x(x+1))=log(x+1)logx+log(x+1)=log(x+1)logx+1y′=(logx)′log(x+1)−logx(log(x+1))′(log(x+1))2y' = \frac{(\log x)' \log(x+1) - \log x (\log(x+1))'}{(\log(x+1))^2}y′=(log(x+1))2(logx)′log(x+1)−logx(log(x+1))′ddx(logx)=1x\frac{d}{dx} (\log x) = \frac{1}{x}dxd(logx)=x1ddx(log(x+1))=1x+1\frac{d}{dx} (\log(x+1)) = \frac{1}{x+1}dxd(log(x+1))=x+11y′=1xlog(x+1)−logx1x+1(log(x+1))2=(x+1)log(x+1)−xlogxx(x+1)(log(x+1))2y' = \frac{\frac{1}{x} \log(x+1) - \log x \frac{1}{x+1}}{(\log(x+1))^2} = \frac{\frac{(x+1)\log(x+1) - x\log x}{x(x+1)}}{(\log(x+1))^2}y′=(log(x+1))2x1log(x+1)−logxx+11=(log(x+1))2x(x+1)(x+1)log(x+1)−xlogxy′=(x+1)log(x+1)−xlogxx(x+1)(log(x+1))2y' = \frac{(x+1)\log(x+1) - x\log x}{x(x+1)(\log(x+1))^2}y′=x(x+1)(log(x+1))2(x+1)log(x+1)−xlogx3. 最終的な答え(x+1)log(x+1)−xlogxx(x+1){log(x+1)}2\frac{(x+1)\log(x+1) - x\log x}{x(x+1)\{\log(x+1)\}^2}x(x+1){log(x+1)}2(x+1)log(x+1)−xlogx選択肢の3が正しい。