与えられた積分を計算します。 $$ \int \frac{1}{x+1} \sqrt{\frac{x}{1-x}} dx $$解析学積分置換積分三角関数定積分2025/7/311. 問題の内容与えられた積分を計算します。∫1x+1x1−xdx \int \frac{1}{x+1} \sqrt{\frac{x}{1-x}} dx ∫x+111−xxdx2. 解き方の手順まず、x=sin2θx = \sin^2 \thetax=sin2θ と置換します。すると、dx=2sinθcosθdθdx = 2 \sin \theta \cos \theta d\thetadx=2sinθcosθdθ となります。また、x1−x=sin2θ1−sin2θ=sin2θcos2θ=sinθcosθ=tanθ\sqrt{\frac{x}{1-x}} = \sqrt{\frac{\sin^2 \theta}{1-\sin^2 \theta}} = \sqrt{\frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\sin \theta}{\cos \theta} = \tan \theta1−xx=1−sin2θsin2θ=cos2θsin2θ=cosθsinθ=tanθとなります。x+1=sin2θ+1x+1 = \sin^2 \theta + 1x+1=sin2θ+1 です。したがって、積分は次のようになります。∫1sin2θ+1tanθ(2sinθcosθ)dθ \int \frac{1}{\sin^2 \theta + 1} \tan \theta (2 \sin \theta \cos \theta) d\theta ∫sin2θ+11tanθ(2sinθcosθ)dθ=∫1sin2θ+1sinθcosθ(2sinθcosθ)dθ = \int \frac{1}{\sin^2 \theta + 1} \frac{\sin \theta}{\cos \theta} (2 \sin \theta \cos \theta) d\theta =∫sin2θ+11cosθsinθ(2sinθcosθ)dθ=∫2sin2θsin2θ+1dθ = \int \frac{2 \sin^2 \theta}{\sin^2 \theta + 1} d\theta =∫sin2θ+12sin2θdθ=∫2sin2θ1+sin2θdθ = \int \frac{2 \sin^2 \theta}{1 + \sin^2 \theta} d\theta =∫1+sin2θ2sin2θdθここで、sin2θ=1−cos2θ2\sin^2 \theta = \frac{1 - \cos 2\theta}{2}sin2θ=21−cos2θ を用いると、∫2(1−cos2θ2)1+1−cos2θ2dθ=∫1−cos2θ3−cos2θ2dθ=∫2(1−cos2θ)3−cos2θdθ \int \frac{2 (\frac{1 - \cos 2\theta}{2})}{1 + \frac{1 - \cos 2\theta}{2}} d\theta = \int \frac{1 - \cos 2\theta}{\frac{3 - \cos 2\theta}{2}} d\theta = \int \frac{2(1 - \cos 2\theta)}{3 - \cos 2\theta} d\theta ∫1+21−cos2θ2(21−cos2θ)dθ=∫23−cos2θ1−cos2θdθ=∫3−cos2θ2(1−cos2θ)dθ=∫2(1−cos2θ)3−cos2θdθ=∫6−2cos2θ−43−cos2θdθ=∫2(3−cos2θ)−43−cos2θdθ = \int \frac{2(1 - \cos 2\theta)}{3 - \cos 2\theta} d\theta = \int \frac{6 - 2 \cos 2\theta - 4}{3 - \cos 2\theta} d\theta = \int \frac{2(3 - \cos 2\theta) - 4}{3 - \cos 2\theta} d\theta =∫3−cos2θ2(1−cos2θ)dθ=∫3−cos2θ6−2cos2θ−4dθ=∫3−cos2θ2(3−cos2θ)−4dθ=∫(2−43−cos2θ)dθ=2∫dθ−4∫13−cos2θdθ = \int \left(2 - \frac{4}{3 - \cos 2\theta}\right) d\theta = 2 \int d\theta - 4 \int \frac{1}{3 - \cos 2\theta} d\theta =∫(2−3−cos2θ4)dθ=2∫dθ−4∫3−cos2θ1dθここで、tanϕ=tanθ\tan \phi = \tan \thetatanϕ=tanθとすると、x=tan2ϕ1+tan2ϕx = \frac{\tan^2\phi}{1+\tan^2\phi}x=1+tan2ϕtan2ϕ.t=tanθt = \tan \thetat=tanθとすると、cos2θ=1−t21+t2\cos 2\theta = \frac{1 - t^2}{1+t^2}cos2θ=1+t21−t2.∫13−cos2θdθ=∫13−1−t21+t2dt1+t2=∫13(1+t2)−(1−t2)dt=∫12+4t2dt=12∫11+2t2dt=1212arctan(2t)\int \frac{1}{3 - \cos 2\theta} d\theta = \int \frac{1}{3 - \frac{1 - t^2}{1+t^2}} \frac{dt}{1+t^2} = \int \frac{1}{3(1+t^2) - (1 - t^2)} dt = \int \frac{1}{2+4t^2}dt = \frac{1}{2} \int \frac{1}{1+2t^2} dt = \frac{1}{2} \frac{1}{\sqrt{2}} \arctan(\sqrt{2}t)∫3−cos2θ1dθ=∫3−1+t21−t211+t2dt=∫3(1+t2)−(1−t2)1dt=∫2+4t21dt=21∫1+2t21dt=2121arctan(2t)∫13−cos2θdθ=122arctan(2tanθ) \int \frac{1}{3 - \cos 2\theta} d\theta = \frac{1}{2\sqrt{2}} \arctan(\sqrt{2} \tan \theta) ∫3−cos2θ1dθ=221arctan(2tanθ)2θ−4122arctan(2tanθ)=2θ−2arctan(2tanθ) 2 \theta - 4 \frac{1}{2 \sqrt{2}} \arctan (\sqrt{2} \tan \theta) = 2 \theta - \sqrt{2} \arctan (\sqrt{2} \tan \theta) 2θ−4221arctan(2tanθ)=2θ−2arctan(2tanθ)最後にθ=arcsinx\theta = \arcsin \sqrt{x}θ=arcsinx.θ=arcsin(x)\theta = \arcsin (\sqrt{x})θ=arcsin(x) より、 tanθ=x1−x\tan \theta = \sqrt{\frac{x}{1-x}}tanθ=1−xx.2arcsin(x)−2arctan(2x1−x)+C2\arcsin (\sqrt{x}) - \sqrt{2}\arctan(\sqrt{2}\sqrt{\frac{x}{1-x}}) + C 2arcsin(x)−2arctan(21−xx)+C3. 最終的な答え2arcsin(x)−2arctan(2x1−x)+C 2 \arcsin (\sqrt{x}) - \sqrt{2} \arctan \left( \sqrt{\frac{2x}{1-x}} \right) + C 2arcsin(x)−2arctan(1−x2x)+C