次の不定積分を計算します。 $\int \frac{1}{(x+2)(x^3+8)} dx$解析学積分不定積分部分分数分解2025/7/31はい、承知いたしました。1. 問題の内容次の不定積分を計算します。∫1(x+2)(x3+8)dx\int \frac{1}{(x+2)(x^3+8)} dx∫(x+2)(x3+8)1dx2. 解き方の手順まず、x3+8x^3+8x3+8を因数分解します。x3+8=x3+23x^3+8 = x^3 + 2^3x3+8=x3+23なので、因数分解の公式a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a3+b3=(a+b)(a2−ab+b2)を使うと、x3+8=(x+2)(x2−2x+4)x^3+8 = (x+2)(x^2-2x+4)x3+8=(x+2)(x2−2x+4)となります。したがって、積分は次のようになります。∫1(x+2)(x+2)(x2−2x+4)dx=∫1(x+2)2(x2−2x+4)dx\int \frac{1}{(x+2)(x+2)(x^2-2x+4)} dx = \int \frac{1}{(x+2)^2(x^2-2x+4)} dx∫(x+2)(x+2)(x2−2x+4)1dx=∫(x+2)2(x2−2x+4)1dx部分分数分解を行います。1(x+2)2(x2−2x+4)=Ax+2+B(x+2)2+Cx+Dx2−2x+4\frac{1}{(x+2)^2(x^2-2x+4)} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{Cx+D}{x^2-2x+4}(x+2)2(x2−2x+4)1=x+2A+(x+2)2B+x2−2x+4Cx+D両辺に(x+2)2(x2−2x+4)(x+2)^2(x^2-2x+4)(x+2)2(x2−2x+4)をかけると1=A(x+2)(x2−2x+4)+B(x2−2x+4)+(Cx+D)(x+2)21 = A(x+2)(x^2-2x+4) + B(x^2-2x+4) + (Cx+D)(x+2)^21=A(x+2)(x2−2x+4)+B(x2−2x+4)+(Cx+D)(x+2)21=A(x3+8)+B(x2−2x+4)+(Cx+D)(x2+4x+4)1 = A(x^3+8) + B(x^2-2x+4) + (Cx+D)(x^2+4x+4)1=A(x3+8)+B(x2−2x+4)+(Cx+D)(x2+4x+4)1=Ax3+8A+Bx2−2Bx+4B+Cx3+4Cx2+4Cx+Dx2+4Dx+4D1 = Ax^3+8A + Bx^2-2Bx+4B + Cx^3+4Cx^2+4Cx+Dx^2+4Dx+4D1=Ax3+8A+Bx2−2Bx+4B+Cx3+4Cx2+4Cx+Dx2+4Dx+4D1=(A+C)x3+(B+4C+D)x2+(−2B+4C+4D)x+(8A+4B+4D)1 = (A+C)x^3 + (B+4C+D)x^2 + (-2B+4C+4D)x + (8A+4B+4D)1=(A+C)x3+(B+4C+D)x2+(−2B+4C+4D)x+(8A+4B+4D)係数を比較すると、A+C=0A+C = 0A+C=0B+4C+D=0B+4C+D = 0B+4C+D=0−2B+4C+4D=0-2B+4C+4D = 0−2B+4C+4D=08A+4B+4D=18A+4B+4D = 18A+4B+4D=1C=−AC = -AC=−AB−4A+D=0⇒D=4A−BB-4A+D = 0 \Rightarrow D = 4A-BB−4A+D=0⇒D=4A−B−2B−4A+4(4A−B)=0⇒−2B−4A+16A−4B=0⇒12A−6B=0⇒B=2A-2B-4A+4(4A-B) = 0 \Rightarrow -2B-4A+16A-4B = 0 \Rightarrow 12A-6B = 0 \Rightarrow B = 2A−2B−4A+4(4A−B)=0⇒−2B−4A+16A−4B=0⇒12A−6B=0⇒B=2A8A+4(2A)+4(4A−2A)=1⇒8A+8A+8A=1⇒24A=1⇒A=1248A+4(2A)+4(4A-2A) = 1 \Rightarrow 8A+8A+8A = 1 \Rightarrow 24A = 1 \Rightarrow A = \frac{1}{24}8A+4(2A)+4(4A−2A)=1⇒8A+8A+8A=1⇒24A=1⇒A=241B=2A=112B = 2A = \frac{1}{12}B=2A=121C=−A=−124C = -A = -\frac{1}{24}C=−A=−241D=4A−B=424−224=224=112D = 4A-B = \frac{4}{24}-\frac{2}{24} = \frac{2}{24} = \frac{1}{12}D=4A−B=244−242=242=121よって、1(x+2)2(x2−2x+4)=1/24x+2+1/12(x+2)2+(−1/24)x+1/12x2−2x+4\frac{1}{(x+2)^2(x^2-2x+4)} = \frac{1/24}{x+2} + \frac{1/12}{(x+2)^2} + \frac{(-1/24)x+1/12}{x^2-2x+4}(x+2)2(x2−2x+4)1=x+21/24+(x+2)21/12+x2−2x+4(−1/24)x+1/12∫1(x+2)2(x2−2x+4)dx=124∫1x+2dx+112∫1(x+2)2dx+∫(−1/24)x+1/12x2−2x+4dx\int \frac{1}{(x+2)^2(x^2-2x+4)} dx = \frac{1}{24}\int \frac{1}{x+2} dx + \frac{1}{12}\int \frac{1}{(x+2)^2} dx + \int \frac{(-1/24)x+1/12}{x^2-2x+4} dx∫(x+2)2(x2−2x+4)1dx=241∫x+21dx+121∫(x+2)21dx+∫x2−2x+4(−1/24)x+1/12dx=124ln∣x+2∣−112(x+2)+∫(−1/24)x+1/12x2−2x+4dx= \frac{1}{24} \ln|x+2| - \frac{1}{12(x+2)} + \int \frac{(-1/24)x+1/12}{x^2-2x+4} dx=241ln∣x+2∣−12(x+2)1+∫x2−2x+4(−1/24)x+1/12dx∫(−1/24)x+1/12x2−2x+4dx=−148∫2x−4x2−2x+4dx=−148ln∣x2−2x+4∣\int \frac{(-1/24)x+1/12}{x^2-2x+4} dx = -\frac{1}{48} \int \frac{2x-4}{x^2-2x+4} dx = -\frac{1}{48} \ln|x^2-2x+4|∫x2−2x+4(−1/24)x+1/12dx=−481∫x2−2x+42x−4dx=−481ln∣x2−2x+4∣124ln∣x+2∣−112(x+2)−148ln∣x2−2x+4∣+C\frac{1}{24} \ln|x+2| - \frac{1}{12(x+2)} -\frac{1}{48} \ln|x^2-2x+4| + C241ln∣x+2∣−12(x+2)1−481ln∣x2−2x+4∣+C=148(2ln∣x+2∣−4x+2−ln∣x2−2x+4∣)+C=\frac{1}{48} (2\ln|x+2| - \frac{4}{x+2} - \ln|x^2-2x+4|) + C=481(2ln∣x+2∣−x+24−ln∣x2−2x+4∣)+C=148(ln∣(x+2)2∣−ln∣x2−2x+4∣−4x+2)+C=\frac{1}{48} (\ln|(x+2)^2| - \ln|x^2-2x+4| - \frac{4}{x+2}) + C=481(ln∣(x+2)2∣−ln∣x2−2x+4∣−x+24)+C=148(ln∣(x+2)2x2−2x+4∣−4x+2)+C=\frac{1}{48} (\ln|\frac{(x+2)^2}{x^2-2x+4}| - \frac{4}{x+2}) + C=481(ln∣x2−2x+4(x+2)2∣−x+24)+C3. 最終的な答え148(ln∣(x+2)2x2−2x+4∣−4x+2)+C\frac{1}{48} \left( \ln\left|\frac{(x+2)^2}{x^2-2x+4}\right| - \frac{4}{x+2} \right) + C481(lnx2−2x+4(x+2)2−x+24)+Cまたは124ln∣x+2∣−112(x+2)−148ln∣x2−2x+4∣+C\frac{1}{24}\ln|x+2| - \frac{1}{12(x+2)} -\frac{1}{48}\ln|x^2-2x+4|+C241ln∣x+2∣−12(x+2)1−481ln∣x2−2x+4∣+C