定積分 $\int_{\frac{\pi}{3}}^{\pi} \cos 2x \cos 3x \, dx$ を計算します。解析学積分定積分三角関数積和の公式2025/8/11. 問題の内容定積分 ∫π3πcos2xcos3x dx\int_{\frac{\pi}{3}}^{\pi} \cos 2x \cos 3x \, dx∫3ππcos2xcos3xdx を計算します。2. 解き方の手順積和の公式を利用します。cosAcosB=12(cos(A+B)+cos(A−B))\cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B))cosAcosB=21(cos(A+B)+cos(A−B))この公式を適用すると、cos2xcos3x=12(cos(2x+3x)+cos(2x−3x))=12(cos5x+cos(−x))=12(cos5x+cosx)\cos 2x \cos 3x = \frac{1}{2} (\cos(2x+3x) + \cos(2x-3x)) = \frac{1}{2} (\cos 5x + \cos (-x)) = \frac{1}{2} (\cos 5x + \cos x)cos2xcos3x=21(cos(2x+3x)+cos(2x−3x))=21(cos5x+cos(−x))=21(cos5x+cosx)したがって、∫π3πcos2xcos3x dx=∫π3π12(cos5x+cosx) dx=12∫π3π(cos5x+cosx) dx\int_{\frac{\pi}{3}}^{\pi} \cos 2x \cos 3x \, dx = \int_{\frac{\pi}{3}}^{\pi} \frac{1}{2} (\cos 5x + \cos x) \, dx = \frac{1}{2} \int_{\frac{\pi}{3}}^{\pi} (\cos 5x + \cos x) \, dx∫3ππcos2xcos3xdx=∫3ππ21(cos5x+cosx)dx=21∫3ππ(cos5x+cosx)dx∫cosax dx=1asinax+C\int \cos ax \, dx = \frac{1}{a} \sin ax + C∫cosaxdx=a1sinax+Cより、12∫π3π(cos5x+cosx) dx=12[15sin5x+sinx]π3π=12[(15sin5π+sinπ)−(15sin5π3+sinπ3)]\frac{1}{2} \int_{\frac{\pi}{3}}^{\pi} (\cos 5x + \cos x) \, dx = \frac{1}{2} \left[ \frac{1}{5} \sin 5x + \sin x \right]_{\frac{\pi}{3}}^{\pi} = \frac{1}{2} \left[ (\frac{1}{5} \sin 5\pi + \sin \pi) - (\frac{1}{5} \sin \frac{5\pi}{3} + \sin \frac{\pi}{3}) \right]21∫3ππ(cos5x+cosx)dx=21[51sin5x+sinx]3ππ=21[(51sin5π+sinπ)−(51sin35π+sin3π)]sin5π=0\sin 5\pi = 0sin5π=0, sinπ=0\sin \pi = 0sinπ=0sin5π3=sin(2π−π3)=sin(−π3)=−sinπ3=−32\sin \frac{5\pi}{3} = \sin (2\pi - \frac{\pi}{3}) = \sin (-\frac{\pi}{3}) = -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2}sin35π=sin(2π−3π)=sin(−3π)=−sin3π=−23sinπ3=32\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}sin3π=2312[(0+0)−(15(−32)+32)]=12[0−(−310+5310)]=12[−(4310)]=12[−235]=−35\frac{1}{2} \left[ (0 + 0) - (\frac{1}{5} (-\frac{\sqrt{3}}{2}) + \frac{\sqrt{3}}{2}) \right] = \frac{1}{2} \left[ 0 - (-\frac{\sqrt{3}}{10} + \frac{5\sqrt{3}}{10}) \right] = \frac{1}{2} \left[ - (\frac{4\sqrt{3}}{10}) \right] = \frac{1}{2} \left[ -\frac{2\sqrt{3}}{5} \right] = -\frac{\sqrt{3}}{5}21[(0+0)−(51(−23)+23)]=21[0−(−103+1053)]=21[−(1043)]=21[−523]=−533. 最終的な答え−35-\frac{\sqrt{3}}{5}−53