$n$ は整数であるとする。$n^2$ が $3$ の倍数ならば、$n$ は $3$ の倍数であることを証明する問題です。

数論整数の性質倍数対偶証明
2025/8/1

1. 問題の内容

nn は整数であるとする。n2n^233 の倍数ならば、nn33 の倍数であることを証明する問題です。

2. 解き方の手順

この問題を解くために、対偶を利用します。元の命題「n2n^233 の倍数ならば、nn33 の倍数である」の対偶は「nn33 の倍数でないならば、n2n^233 の倍数でない」となります。この対偶を証明します。
nn33 の倍数でないとき、nn3k+13k+1 または 3k+23k+2 (kk は整数) の形で表すことができます。
(1) n=3k+1n = 3k + 1 のとき
n2=(3k+1)2=9k2+6k+1=3(3k2+2k)+1n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1
3k2+2k3k^2 + 2k は整数なので、n2n^233 で割ると 11 余る数であり、33 の倍数ではありません。
(2) n=3k+2n = 3k + 2 のとき
n2=(3k+2)2=9k2+12k+4=9k2+12k+3+1=3(3k2+4k+1)+1n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1
3k2+4k+13k^2 + 4k + 1 は整数なので、n2n^233 で割ると 11 余る数であり、33 の倍数ではありません。
したがって、nn33 の倍数でないならば、n2n^233 の倍数ではありません。これは対偶が真であることを示しています。対偶が真であるとき、元の命題も真であるため、n2n^233 の倍数ならば、nn33 の倍数であることが証明されました。

3. 最終的な答え

n2n^233 の倍数ならば、nn33 の倍数である。 (証明終わり)

「数論」の関連問題

$m$, $n$, $k$ は自然数とする。命題「積 $mnk$ が偶数ならば、$m$, $n$, $k$ の少なくとも1つは偶数である」の逆、対偶、裏をそれぞれ述べ、それらの真偽を調べよ。

命題対偶偶数奇数自然数真偽
2025/8/1

自然数 $a_1, a_2$ に対して、漸化式 $a_{k+2} = |a_{k+1} - a_k|$ ($k = 1, 2, ...$) によって数列 $\{a_k\}$ を定める。この数列において...

漸化式数列絶対値最大公約数
2025/8/1

$\sqrt{7}$ が無理数であることを証明します。ただし、$n$ を自然数とするとき、$n^2$ が 7 の倍数ならば、$n$ は 7 の倍数であることを用いてよいものとします。

無理数背理法平方根有理数素数
2025/8/1

$\sqrt{7}$ が無理数であることを用いて、$\sqrt{5} + \sqrt{7}$ が無理数であることを証明する問題です。

無理数背理法平方根有理数
2025/8/1

整数 $a$, $b$ について、積 $ab$ が 3 の倍数ならば、$a$ または $b$ は 3 の倍数であることを、対偶を考えることによって証明する。

整数の性質倍数対偶証明
2025/8/1

自然数Cを7で割ると余りが1になる。自然数C+Dは7で割り切れる。自然数Dを7で割ったときの余りを求めよ。

剰余整数の性質割り算
2025/8/1

4桁の自然数があり、その千の位の数と一の位の数を入れ替えてできる数を元の数から引いた差は、何の倍数になるかを求め、その最大の倍数を答える。

倍数整数の性質桁の入れ替え4桁の自然数
2025/8/1

自然数 $x$ と $y$ があり、$x$ は 7 の倍数、$y$ は 19 の倍数で、$xy = 3724$ を満たす。$x$ と $y$ が 1 以外の公約数を持たないとき、$x$ と $y$ の...

整数の性質素因数分解公約数倍数互いに素
2025/8/1

(1) $\overline{A} \cap \overline{B}$ (2) $A \cap B$ (3) $A$

集合整数の性質包除原理倍数
2025/8/1

ユークリッドの互除法を用いて、469と119の最大公約数を求める問題です。互除法の計算過程が一部示されており、空欄を埋めて最大公約数を求めます。

最大公約数ユークリッドの互除法整数の性質
2025/7/31