定積分 $\int_{0}^{1} \frac{x^2}{(x+1)^2(x-2)} dx$ を計算します。解析学定積分部分分数分解積分計算2025/8/11. 問題の内容定積分 ∫01x2(x+1)2(x−2)dx\int_{0}^{1} \frac{x^2}{(x+1)^2(x-2)} dx∫01(x+1)2(x−2)x2dx を計算します。2. 解き方の手順まず、被積分関数を部分分数分解します。x2(x+1)2(x−2)=Ax+1+B(x+1)2+Cx−2\frac{x^2}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}(x+1)2(x−2)x2=x+1A+(x+1)2B+x−2C両辺に (x+1)2(x−2)(x+1)^2(x-2)(x+1)2(x−2) を掛けると、x2=A(x+1)(x−2)+B(x−2)+C(x+1)2x^2 = A(x+1)(x-2) + B(x-2) + C(x+1)^2x2=A(x+1)(x−2)+B(x−2)+C(x+1)2x2=A(x2−x−2)+B(x−2)+C(x2+2x+1)x^2 = A(x^2-x-2) + B(x-2) + C(x^2+2x+1)x2=A(x2−x−2)+B(x−2)+C(x2+2x+1)x2=(A+C)x2+(−A+B+2C)x+(−2A−2B+C)x^2 = (A+C)x^2 + (-A+B+2C)x + (-2A-2B+C)x2=(A+C)x2+(−A+B+2C)x+(−2A−2B+C)係数を比較すると、A+C=1A+C = 1A+C=1−A+B+2C=0-A+B+2C = 0−A+B+2C=0−2A−2B+C=0-2A-2B+C = 0−2A−2B+C=0最初の式から C=1−AC = 1-AC=1−A を得ます。これを2番目と3番目の式に代入すると、−A+B+2(1−A)=0⇒−3A+B=−2-A+B+2(1-A) = 0 \Rightarrow -3A+B = -2−A+B+2(1−A)=0⇒−3A+B=−2−2A−2B+(1−A)=0⇒−3A−2B=−1-2A-2B+(1-A) = 0 \Rightarrow -3A-2B = -1−2A−2B+(1−A)=0⇒−3A−2B=−1連立方程式を解きます。−3A+B=−2⇒B=3A−2-3A+B = -2 \Rightarrow B = 3A-2−3A+B=−2⇒B=3A−2−3A−2(3A−2)=−1-3A-2(3A-2) = -1−3A−2(3A−2)=−1−3A−6A+4=−1-3A-6A+4 = -1−3A−6A+4=−1−9A=−5-9A = -5−9A=−5A=59A = \frac{5}{9}A=95B=3(59)−2=53−2=5−63=−13B = 3\left(\frac{5}{9}\right)-2 = \frac{5}{3}-2 = \frac{5-6}{3} = -\frac{1}{3}B=3(95)−2=35−2=35−6=−31C=1−A=1−59=49C = 1 - A = 1 - \frac{5}{9} = \frac{4}{9}C=1−A=1−95=94よって、x2(x+1)2(x−2)=5/9x+1+−1/3(x+1)2+4/9x−2\frac{x^2}{(x+1)^2(x-2)} = \frac{5/9}{x+1} + \frac{-1/3}{(x+1)^2} + \frac{4/9}{x-2}(x+1)2(x−2)x2=x+15/9+(x+1)2−1/3+x−24/9積分を計算します。∫01x2(x+1)2(x−2)dx=∫01(5/9x+1+−1/3(x+1)2+4/9x−2)dx\int_{0}^{1} \frac{x^2}{(x+1)^2(x-2)} dx = \int_{0}^{1} \left( \frac{5/9}{x+1} + \frac{-1/3}{(x+1)^2} + \frac{4/9}{x-2} \right) dx∫01(x+1)2(x−2)x2dx=∫01(x+15/9+(x+1)2−1/3+x−24/9)dx=[59ln∣x+1∣+13(x+1)+49ln∣x−2∣]01= \left[ \frac{5}{9} \ln|x+1| + \frac{1}{3(x+1)} + \frac{4}{9} \ln|x-2| \right]_{0}^{1}=[95ln∣x+1∣+3(x+1)1+94ln∣x−2∣]01=(59ln2+16+49ln1)−(59ln1+13+49ln2)= \left( \frac{5}{9} \ln 2 + \frac{1}{6} + \frac{4}{9} \ln 1 \right) - \left( \frac{5}{9} \ln 1 + \frac{1}{3} + \frac{4}{9} \ln 2 \right)=(95ln2+61+94ln1)−(95ln1+31+94ln2)=59ln2+16−13−49ln2= \frac{5}{9} \ln 2 + \frac{1}{6} - \frac{1}{3} - \frac{4}{9} \ln 2=95ln2+61−31−94ln2=19ln2+16−26=19ln2−16= \frac{1}{9} \ln 2 + \frac{1}{6} - \frac{2}{6} = \frac{1}{9} \ln 2 - \frac{1}{6}=91ln2+61−62=91ln2−613. 最終的な答え19ln2−16\frac{1}{9} \ln 2 - \frac{1}{6}91ln2−61