与えられた連立一次方程式を解く問題です。連立方程式は以下の通りです。 $2x + 4y = 1$ $5x + 3y = 9$

代数学連立一次方程式加減法線形代数
2025/8/1

1. 問題の内容

与えられた連立一次方程式を解く問題です。連立方程式は以下の通りです。
2x+4y=12x + 4y = 1
5x+3y=95x + 3y = 9

2. 解き方の手順

この連立方程式を解くために、加減法を使用します。
まず、最初の式を5倍し、2番目の式を2倍します。
10x+20y=510x + 20y = 5
10x+6y=1810x + 6y = 18
次に、最初の式から2番目の式を引きます。
(10x+20y)(10x+6y)=518(10x + 20y) - (10x + 6y) = 5 - 18
14y=1314y = -13
y=1314y = -\frac{13}{14}
次に、yyの値を最初の式に代入して、xxを求めます。
2x+4(1314)=12x + 4(-\frac{13}{14}) = 1
2x5214=12x - \frac{52}{14} = 1
2x=1+52142x = 1 + \frac{52}{14}
2x=1414+52142x = \frac{14}{14} + \frac{52}{14}
2x=66142x = \frac{66}{14}
x=3314x = \frac{33}{14}

3. 最終的な答え

x=3314x = \frac{33}{14}
y=1314y = -\frac{13}{14}

「代数学」の関連問題

複素数 $z$ が与えられた等式 $|iz+3| = |2z-6|$ を満たすとき、以下の問いに答える問題です。 (1) 等式を満たす点 $z$ 全体が表す図形を求める。 (2) $z - \over...

複素数絶対値複素平面距離最大値
2025/8/2

問題は、二次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答えるものです。 (1) 頂点の $y$ 座標を求め、その最大値を求める。 (2) $-1 \le x \l...

二次関数最大値最小値平方完成場合分け
2025/8/2

行列 $A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ と $B = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{...

行列逆行列行列式
2025/8/2

与えられた方程式 $-4(x+1)^2 - 3 = 0$ を解き、$x$ の値を求めます。

二次方程式虚数解複素数方程式
2025/8/2

与えられた2次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答える問題です。 (1) 放物線 C の頂点の y 座標とその最大値を求める。 (2) $-1 \le x...

二次関数平方完成最大値最小値
2025/8/2

与えられたベクトル $c$ と行列 $A$, $B$ に対して、以下の行列の積を計算します。計算不能の場合は「計算不能」と答えます。 (i) $AB$ (ii) $Bc$ (iii) ${}^tAc$...

行列行列の積転置行列ベクトルの積
2025/8/2

問題は、与えられた数式を計算して簡単にすることです。 具体的には、 (1) $(-6x+3y)+(-7x-4y)$ を計算する必要があります。

式の計算同類項一次式
2025/8/2

与えられた2つの多項式の足し算をしなさい。 $(-6x+3y)+(-7x-4y)$

多項式加法同類項
2025/8/2

与えられた2つの2次関数について、指定された条件を満たす定数 $k$ の値の範囲を求める問題です。 (1) $y = x^2 - 4x + 2k - 2$ のグラフが $x$ 軸と共有点を持たない。 ...

二次関数判別式不等式二次不等式
2025/8/2

与えられた4つの方程式を解く問題です。 (1) $\frac{1}{3}x + 5 = -\frac{1}{6}x + 3$ (2) $\frac{x+2}{4} = \frac{x-5}{6}$ (...

方程式一次方程式
2025/8/2