$x = \frac{\sqrt{3}+1}{\sqrt{3}-1}$, $y = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ のとき、$x^2 + y^2$ と $x^3 + y^3$ の値をそれぞれ求める問題です。代数学式の計算有理化展開対称式2025/8/11. 問題の内容x=3+13−1x = \frac{\sqrt{3}+1}{\sqrt{3}-1}x=3−13+1, y=3−13+1y = \frac{\sqrt{3}-1}{\sqrt{3}+1}y=3+13−1 のとき、x2+y2x^2 + y^2x2+y2 と x3+y3x^3 + y^3x3+y3 の値をそれぞれ求める問題です。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=3+13−1=(3+1)(3+1)(3−1)(3+1)=3+23+13−1=4+232=2+3x = \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3+2\sqrt{3}+1}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}x=3−13+1=(3−1)(3+1)(3+1)(3+1)=3−13+23+1=24+23=2+3y=3−13+1=(3−1)(3−1)(3+1)(3−1)=3−23+13−1=4−232=2−3y = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3-2\sqrt{3}+1}{3-1} = \frac{4-2\sqrt{3}}{2} = 2-\sqrt{3}y=3+13−1=(3+1)(3−1)(3−1)(3−1)=3−13−23+1=24−23=2−3次に、x+yx+yx+yとxyxyxyを計算します。x+y=(2+3)+(2−3)=4x+y = (2+\sqrt{3}) + (2-\sqrt{3}) = 4x+y=(2+3)+(2−3)=4xy=(2+3)(2−3)=4−3=1xy = (2+\sqrt{3})(2-\sqrt{3}) = 4-3 = 1xy=(2+3)(2−3)=4−3=1x2+y2x^2 + y^2x2+y2 を計算します。x2+y2=(x+y)2−2xy=42−2(1)=16−2=14x^2 + y^2 = (x+y)^2 - 2xy = 4^2 - 2(1) = 16 - 2 = 14x2+y2=(x+y)2−2xy=42−2(1)=16−2=14x3+y3x^3 + y^3x3+y3 を計算します。x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=4(42−3(1))=4(16−3)=4(13)=52x^3 + y^3 = (x+y)(x^2 - xy + y^2) = (x+y)((x+y)^2 - 3xy) = 4(4^2 - 3(1)) = 4(16-3) = 4(13) = 52x3+y3=(x+y)(x2−xy+y2)=(x+y)((x+y)2−3xy)=4(42−3(1))=4(16−3)=4(13)=523. 最終的な答えx2+y2=14x^2 + y^2 = 14x2+y2=14x3+y3=52x^3 + y^3 = 52x3+y3=52