2次関数 $y = x^2 + 3mx + m - 2$ のグラフが、$x$ 軸の $x > -3$ の部分と $x < -3$ の部分で交わるような定数 $m$ の値の範囲を求めよ。

代数学二次関数グラフ不等式
2025/8/1

1. 問題の内容

2次関数 y=x2+3mx+m2y = x^2 + 3mx + m - 2 のグラフが、xx 軸の x>3x > -3 の部分と x<3x < -3 の部分で交わるような定数 mm の値の範囲を求めよ。

2. 解き方の手順

この問題を解くには、まず f(x)=x2+3mx+m2f(x) = x^2 + 3mx + m - 2 とおきます。
グラフが x>3x > -3x<3x < -3 の部分で xx 軸と交わる条件は、f(3)<0f(-3) < 0 であることです。
これは、グラフが x=3x = -3 のとき、xx 軸よりも下にある必要があることを意味します。
f(3)f(-3) を計算します。
f(3)=(3)2+3m(3)+m2=99m+m2=78mf(-3) = (-3)^2 + 3m(-3) + m - 2 = 9 - 9m + m - 2 = 7 - 8m
条件 f(3)<0f(-3) < 0 より、
78m<07 - 8m < 0
8m>78m > 7
m>78m > \frac{7}{8}
したがって、m>78m > \frac{7}{8} が求める mm の範囲です。

3. 最終的な答え

m>78m > \frac{7}{8}

「代数学」の関連問題

(1) 行列 $A = \begin{bmatrix} 2 & -1 & 8 \\ 1 & -1 & 5 \\ -3 & 5 & -16 \end{bmatrix}$ の行列式 $|A|$ を求めます...

行列行列式逆行列余因子行列検算
2025/8/2

複素数 $z$ が与えられた等式 $|iz+3| = |2z-6|$ を満たすとき、以下の問いに答える問題です。 (1) 等式を満たす点 $z$ 全体が表す図形を求める。 (2) $z - \over...

複素数絶対値複素平面距離最大値
2025/8/2

問題は、二次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答えるものです。 (1) 頂点の $y$ 座標を求め、その最大値を求める。 (2) $-1 \le x \l...

二次関数最大値最小値平方完成場合分け
2025/8/2

行列 $A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ と $B = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{...

行列逆行列行列式
2025/8/2

与えられた方程式 $-4(x+1)^2 - 3 = 0$ を解き、$x$ の値を求めます。

二次方程式虚数解複素数方程式
2025/8/2

与えられた2次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答える問題です。 (1) 放物線 C の頂点の y 座標とその最大値を求める。 (2) $-1 \le x...

二次関数平方完成最大値最小値
2025/8/2

与えられたベクトル $c$ と行列 $A$, $B$ に対して、以下の行列の積を計算します。計算不能の場合は「計算不能」と答えます。 (i) $AB$ (ii) $Bc$ (iii) ${}^tAc$...

行列行列の積転置行列ベクトルの積
2025/8/2

問題は、与えられた数式を計算して簡単にすることです。 具体的には、 (1) $(-6x+3y)+(-7x-4y)$ を計算する必要があります。

式の計算同類項一次式
2025/8/2

与えられた2つの多項式の足し算をしなさい。 $(-6x+3y)+(-7x-4y)$

多項式加法同類項
2025/8/2

与えられた2つの2次関数について、指定された条件を満たす定数 $k$ の値の範囲を求める問題です。 (1) $y = x^2 - 4x + 2k - 2$ のグラフが $x$ 軸と共有点を持たない。 ...

二次関数判別式不等式二次不等式
2025/8/2