2000円を出して、1個160円のチョコレートと1個140円のプリンを合わせて10個買ったところ、おつりが540円でした。チョコレートとプリンをそれぞれ何個買ったかを求める問題です。チョコレートの個数を$x$個とします。

代数学方程式文章問題連立方程式一次方程式
2025/8/1

1. 問題の内容

2000円を出して、1個160円のチョコレートと1個140円のプリンを合わせて10個買ったところ、おつりが540円でした。チョコレートとプリンをそれぞれ何個買ったかを求める問題です。チョコレートの個数をxx個とします。

2. 解き方の手順

チョコレートの個数をxx個とすると、プリンの個数は10x10-x個と表されます。
チョコレートとプリンの代金の合計は、出したお金からおつりを引いた金額になります。
つまり、
2000540=14602000 - 540 = 1460円となります。
チョコレートの代金は160x160x円、プリンの代金は140(10x)140(10-x)円です。
よって、次のような方程式が成り立ちます。
160x+140(10x)=1460160x + 140(10-x) = 1460
これを解きます。
160x+1400140x=1460160x + 1400 - 140x = 1460
20x=1460140020x = 1460 - 1400
20x=6020x = 60
x=3x = 3
チョコレートは3個買ったことになります。
プリンの個数は10x=103=710 - x = 10 - 3 = 7個となります。

3. 最終的な答え

チョコレート 3個
プリン 7個

「代数学」の関連問題

方程式 $7x + 2 = 9x + 7$ を解いて、$x$ の値を求めます。

一次方程式方程式の解法代数
2025/8/2

(1) 行列 $A = \begin{bmatrix} 2 & -1 & 8 \\ 1 & -1 & 5 \\ -3 & 5 & -16 \end{bmatrix}$ の行列式 $|A|$ を求めます...

行列行列式逆行列余因子行列検算
2025/8/2

複素数 $z$ が与えられた等式 $|iz+3| = |2z-6|$ を満たすとき、以下の問いに答える問題です。 (1) 等式を満たす点 $z$ 全体が表す図形を求める。 (2) $z - \over...

複素数絶対値複素平面距離最大値
2025/8/2

問題は、二次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答えるものです。 (1) 頂点の $y$ 座標を求め、その最大値を求める。 (2) $-1 \le x \l...

二次関数最大値最小値平方完成場合分け
2025/8/2

行列 $A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ と $B = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{...

行列逆行列行列式
2025/8/2

与えられた方程式 $-4(x+1)^2 - 3 = 0$ を解き、$x$ の値を求めます。

二次方程式虚数解複素数方程式
2025/8/2

与えられた2次関数 $y = 2x^2 + 8ax - 2a - 1$ について、以下の問いに答える問題です。 (1) 放物線 C の頂点の y 座標とその最大値を求める。 (2) $-1 \le x...

二次関数平方完成最大値最小値
2025/8/2

与えられたベクトル $c$ と行列 $A$, $B$ に対して、以下の行列の積を計算します。計算不能の場合は「計算不能」と答えます。 (i) $AB$ (ii) $Bc$ (iii) ${}^tAc$...

行列行列の積転置行列ベクトルの積
2025/8/2

問題は、与えられた数式を計算して簡単にすることです。 具体的には、 (1) $(-6x+3y)+(-7x-4y)$ を計算する必要があります。

式の計算同類項一次式
2025/8/2

与えられた2つの多項式の足し算をしなさい。 $(-6x+3y)+(-7x-4y)$

多項式加法同類項
2025/8/2