関数 $y = x^2e^{2x}$ の $n$ 次導関数を求める。解析学導関数微分数学的帰納法数列2025/8/21. 問題の内容関数 y=x2e2xy = x^2e^{2x}y=x2e2x の nnn 次導関数を求める。2. 解き方の手順まず、yyy の 1 次、2 次、3 次導関数を計算し、規則性を見つける。y′=2xe2x+x2(2e2x)=(2x2+2x)e2xy' = 2xe^{2x} + x^2(2e^{2x}) = (2x^2+2x)e^{2x}y′=2xe2x+x2(2e2x)=(2x2+2x)e2xy′′=(4x+2)e2x+(2x2+2x)(2e2x)=(4x+2+4x2+4x)e2x=(4x2+8x+2)e2xy'' = (4x+2)e^{2x} + (2x^2+2x)(2e^{2x}) = (4x+2+4x^2+4x)e^{2x} = (4x^2+8x+2)e^{2x}y′′=(4x+2)e2x+(2x2+2x)(2e2x)=(4x+2+4x2+4x)e2x=(4x2+8x+2)e2xy′′′=(8x+8)e2x+(4x2+8x+2)(2e2x)=(8x+8+8x2+16x+4)e2x=(8x2+24x+12)e2xy''' = (8x+8)e^{2x} + (4x^2+8x+2)(2e^{2x}) = (8x+8+8x^2+16x+4)e^{2x} = (8x^2+24x+12)e^{2x}y′′′=(8x+8)e2x+(4x2+8x+2)(2e2x)=(8x+8+8x2+16x+4)e2x=(8x2+24x+12)e2x一般に、y(n)=(anx2+bnx+cn)e2xy^{(n)} = (a_n x^2 + b_n x + c_n)e^{2x}y(n)=(anx2+bnx+cn)e2xと予想する。y(n+1)=(2anx+bn)e2x+(anx2+bnx+cn)2e2x=(2anx+bn+2anx2+2bnx+2cn)e2x=(2anx2+(2an+2bn)x+(bn+2cn))e2xy^{(n+1)} = (2a_n x + b_n)e^{2x} + (a_n x^2 + b_n x + c_n) 2e^{2x} = (2a_n x + b_n + 2a_n x^2 + 2b_n x + 2c_n)e^{2x} = (2a_n x^2 + (2a_n+2b_n)x + (b_n+2c_n))e^{2x}y(n+1)=(2anx+bn)e2x+(anx2+bnx+cn)2e2x=(2anx+bn+2anx2+2bnx+2cn)e2x=(2anx2+(2an+2bn)x+(bn+2cn))e2xよって、an+1=2ana_{n+1} = 2a_nan+1=2anbn+1=2an+2bnb_{n+1} = 2a_n + 2b_nbn+1=2an+2bncn+1=bn+2cnc_{n+1} = b_n + 2c_ncn+1=bn+2cna1=2,a2=4,a3=8a_1 = 2, a_2 = 4, a_3 = 8a1=2,a2=4,a3=8 より an=2na_n = 2^nan=2nb1=2,b2=8,b3=24b_1 = 2, b_2 = 8, b_3 = 24b1=2,b2=8,b3=24bn+1=2n+1+2bnb_{n+1} = 2^{n+1} + 2b_nbn+1=2n+1+2bn, bn/2n=dnb_n/2^n = d_nbn/2n=dn とおくと、 2n+1dn+1=2n+1+2(2ndn)2^{n+1} d_{n+1} = 2^{n+1} + 2(2^n d_n)2n+1dn+1=2n+1+2(2ndn), dn+1=1+dnd_{n+1} = 1 + d_ndn+1=1+dn.d1=b1/2=1d_1 = b_1/2 = 1d1=b1/2=1, dn=nd_n = ndn=n. よって、 bn=n2nb_n = n 2^nbn=n2n.c1=0,c2=2,c3=12c_1 = 0, c_2 = 2, c_3 = 12c1=0,c2=2,c3=12cn+1=n2n+2cnc_{n+1} = n 2^n + 2 c_ncn+1=n2n+2cn, cn/2n=enc_n/2^n = e_ncn/2n=en とおくと、2n+1en+1=n2n+2(2nen)2^{n+1} e_{n+1} = n 2^n + 2(2^n e_n)2n+1en+1=n2n+2(2nen), 2en+1=n+2en2e_{n+1} = n + 2e_n2en+1=n+2en.en+1=n/2+ene_{n+1} = n/2 + e_nen+1=n/2+en, en=∑k=1n−1k2e_n = \sum_{k=1}^{n-1} \frac{k}{2}en=∑k=1n−12ken=12(n−1)n2=n(n−1)4e_n = \frac{1}{2} \frac{(n-1)n}{2} = \frac{n(n-1)}{4}en=212(n−1)n=4n(n−1). よって、cn=n(n−1)42n=n(n−1)222n=(n2−n)2n−2c_n = \frac{n(n-1)}{4} 2^n = \frac{n(n-1)}{2^2} 2^n = (n^2-n)2^{n-2}cn=4n(n−1)2n=22n(n−1)2n=(n2−n)2n−2.したがって、 y(n)=(2nx2+n2nx+(n2−n)2n−2)e2x=2n−2(4x2+4nx+n2−n)e2xy^{(n)} = (2^n x^2 + n2^n x + (n^2-n)2^{n-2})e^{2x} = 2^{n-2} (4x^2 + 4nx + n^2-n)e^{2x}y(n)=(2nx2+n2nx+(n2−n)2n−2)e2x=2n−2(4x2+4nx+n2−n)e2x3. 最終的な答えy(n)=2n−2(4x2+4nx+n2−n)e2xy^{(n)} = 2^{n-2} (4x^2 + 4nx + n^2-n)e^{2x}y(n)=2n−2(4x2+4nx+n2−n)e2x