数列 $\{a_n\}$ が $a_1 = 1$, $a_2 = \frac{7}{3}$ であり、漸化式 $3a_{n+2} - 4a_{n+1} + a_n = 0$ を満たすとき、$\lim_{n \to \infty} a_n$ を求めよ。解析学数列漸化式極限2025/8/21. 問題の内容数列 {an}\{a_n\}{an} が a1=1a_1 = 1a1=1, a2=73a_2 = \frac{7}{3}a2=37 であり、漸化式 3an+2−4an+1+an=03a_{n+2} - 4a_{n+1} + a_n = 03an+2−4an+1+an=0 を満たすとき、limn→∞an\lim_{n \to \infty} a_nlimn→∞an を求めよ。2. 解き方の手順与えられた漸化式を変形する。3an+2−4an+1+an=03a_{n+2} - 4a_{n+1} + a_n = 03an+2−4an+1+an=0 より、3an+2−3an+1−an+1+an=03a_{n+2} - 3a_{n+1} - a_{n+1} + a_n = 03an+2−3an+1−an+1+an=03(an+2−an+1)=an+1−an3(a_{n+2} - a_{n+1}) = a_{n+1} - a_n3(an+2−an+1)=an+1−anan+2−an+1=13(an+1−an)a_{n+2} - a_{n+1} = \frac{1}{3} (a_{n+1} - a_n)an+2−an+1=31(an+1−an)数列 {an+1−an}\{a_{n+1} - a_n\}{an+1−an} は公比 13\frac{1}{3}31 の等比数列である。an+1−an=(a2−a1)(13)n−1=(73−1)(13)n−1=43(13)n−1=4(13)na_{n+1} - a_n = (a_2 - a_1) (\frac{1}{3})^{n-1} = (\frac{7}{3} - 1) (\frac{1}{3})^{n-1} = \frac{4}{3} (\frac{1}{3})^{n-1} = 4 (\frac{1}{3})^nan+1−an=(a2−a1)(31)n−1=(37−1)(31)n−1=34(31)n−1=4(31)nan=a1+∑k=1n−1(ak+1−ak)=1+∑k=1n−14(13)ka_n = a_1 + \sum_{k=1}^{n-1} (a_{k+1} - a_k) = 1 + \sum_{k=1}^{n-1} 4 (\frac{1}{3})^kan=a1+∑k=1n−1(ak+1−ak)=1+∑k=1n−14(31)k=1+4∑k=1n−1(13)k=1+4⋅13(1−(13)n−1)1−13=1+4⋅13(1−(13)n−1)23=1+4⋅12(1−(13)n−1)= 1 + 4 \sum_{k=1}^{n-1} (\frac{1}{3})^k = 1 + 4 \cdot \frac{\frac{1}{3} (1 - (\frac{1}{3})^{n-1})}{1 - \frac{1}{3}} = 1 + 4 \cdot \frac{\frac{1}{3} (1 - (\frac{1}{3})^{n-1})}{\frac{2}{3}} = 1 + 4 \cdot \frac{1}{2} (1 - (\frac{1}{3})^{n-1})=1+4∑k=1n−1(31)k=1+4⋅1−3131(1−(31)n−1)=1+4⋅3231(1−(31)n−1)=1+4⋅21(1−(31)n−1)=1+2(1−(13)n−1)=1+2−2(13)n−1=3−2(13)n−1= 1 + 2 (1 - (\frac{1}{3})^{n-1}) = 1 + 2 - 2 (\frac{1}{3})^{n-1} = 3 - 2 (\frac{1}{3})^{n-1}=1+2(1−(31)n−1)=1+2−2(31)n−1=3−2(31)n−1したがって、an=3−2(13)n−1a_n = 3 - 2 (\frac{1}{3})^{n-1}an=3−2(31)n−1limn→∞an=limn→∞(3−2(13)n−1)=3−2⋅0=3\lim_{n \to \infty} a_n = \lim_{n \to \infty} (3 - 2 (\frac{1}{3})^{n-1}) = 3 - 2 \cdot 0 = 3limn→∞an=limn→∞(3−2(31)n−1)=3−2⋅0=33. 最終的な答え3