$(x-2y-5)^2$ を展開しなさい。代数学展開多項式二乗の公式2025/8/21. 問題の内容(x−2y−5)2(x-2y-5)^2(x−2y−5)2 を展開しなさい。2. 解き方の手順(x−2y−5)2(x-2y-5)^2(x−2y−5)2 を展開するために、(A+B+C)2=A2+B2+C2+2AB+2BC+2CA(A+B+C)^2 = A^2 + B^2 + C^2 + 2AB + 2BC + 2CA(A+B+C)2=A2+B2+C2+2AB+2BC+2CA の公式を利用します。この問題では、A=xA = xA=x, B=−2yB = -2yB=−2y, C=−5C = -5C=−5 となります。したがって、(x−2y−5)2=x2+(−2y)2+(−5)2+2(x)(−2y)+2(−2y)(−5)+2(−5)(x)(x-2y-5)^2 = x^2 + (-2y)^2 + (-5)^2 + 2(x)(-2y) + 2(-2y)(-5) + 2(-5)(x)(x−2y−5)2=x2+(−2y)2+(−5)2+2(x)(−2y)+2(−2y)(−5)+2(−5)(x)=x2+4y2+25−4xy+20y−10x= x^2 + 4y^2 + 25 - 4xy + 20y - 10x=x2+4y2+25−4xy+20y−10x3. 最終的な答えx2+4y2−4xy−10x+20y+25x^2 + 4y^2 - 4xy - 10x + 20y + 25x2+4y2−4xy−10x+20y+25