問題は、「2つの続いた偶数の積に1を加えた数は、奇数の2乗になる」ということを証明する穴埋め問題です。特に、空欄cに当てはまるものを答える必要があります。

代数学因数分解整数の性質証明二次式
2025/8/2

1. 問題の内容

問題は、「2つの続いた偶数の積に1を加えた数は、奇数の2乗になる」ということを証明する穴埋め問題です。特に、空欄cに当てはまるものを答える必要があります。

2. 解き方の手順

与えられた証明を順番に確認します。
* 2つの続いた偶数を 2n,2n+22n, 2n+2 と表しています(nnは整数)。
* これらの積に1を加えると、
2n(2n+2)+1=4n2+4n+12n(2n+2)+1 = 4n^2 + 4n + 1
* 4n2+4n+14n^2 + 4n + 1 を因数分解すると (2n+1)2(2n+1)^2 となります。
* したがって、cc2n+12n+1 となります。これは奇数であるため、dd は奇数の2乗を表すことになります。

3. 最終的な答え

2n+12n+1

「代数学」の関連問題

関数 $y = -\frac{2}{3}x^2$ について、$x$ の変域が $-3 < x \le -2$ のとき、$y$ の変域を求める。つまり、$\boxed{ク} < y \le -\frac...

二次関数関数の変域グラフ最大値最小値
2025/8/2

2つの関数 $y = ax^2$ と $y = 4x + 1$ において、$x$ の値が3から6まで増加するときの変化の割合が等しいとき、$a$ の値を求める問題です。

二次関数変化の割合方程式
2025/8/2

与えられた多項式の次数を答える問題です。 (1) $x^2 + x + 3 - 2x^2 - 6x + 7$ (2) $1 - 5x^2 - 3x^3 + 7x - 2x^2 + 4x^3 - 9$

多項式次数整理
2025/8/2

(1) クラメルの公式を用いて、次の連立一次方程式の解のうち、$z$を求めます。 $ \begin{cases} 7x + 3y - 7z = 0 \\ -3x - y + 4z =...

線形代数連立一次方程式クラメルの公式行列逆行列行列式余因子
2025/8/2

与えられた2次方程式 $(x-2)(x-4)=15$ を解き、$x$ の値を求める問題です。

二次方程式因数分解方程式
2025/8/2

2次方程式 $4x^2 - 16x + 8 = 0$ を解き、解の公式の形 $x = \text{ム} \pm \sqrt{\text{メ}}$ で表したときのムとメの値を求める問題です。

二次方程式解の公式平方完成
2025/8/2

与えられた2次方程式 $x^2 - 5x - 14 = 0$ を解き、$x$ の値を求める問題です。

二次方程式因数分解解の公式
2025/8/2

与えられた2次方程式 $(x+5)(x-2) = 0$ の解を求める問題です。

二次方程式解の公式因数分解
2025/8/2

2次方程式 $x^2 + 6x + 4 = 0$ を解き、$x = -\text{八} \pm \sqrt{\text{ヒ}}$ の形式で答えなさい。

二次方程式解の公式平方完成
2025/8/2

二次方程式 $6x^2 + x - 2 = 0$ を解き、解を $x = -\frac{ニ}{ヌ}, \frac{ネ}{ノ}$ の形式で求める問題です。

二次方程式因数分解方程式の解
2025/8/2