多項式 $A = 3x^2 + 4x - 1$ と $B = x^2 - 2x - 5$ が与えられています。$A + B$ を計算し、$4x^2 + \text{ア}x - \text{イ}$ の形で表したときのアとイに当てはまる数を求める問題です。

代数学多項式計算同類項
2025/8/2

1. 問題の内容

多項式 A=3x2+4x1A = 3x^2 + 4x - 1B=x22x5B = x^2 - 2x - 5 が与えられています。A+BA + B を計算し、4x2+x4x^2 + \text{ア}x - \text{イ} の形で表したときのアとイに当てはまる数を求める問題です。

2. 解き方の手順

まず、A+BA + B を計算します。
A+B=(3x2+4x1)+(x22x5)A + B = (3x^2 + 4x - 1) + (x^2 - 2x - 5)
次に、同類項をまとめます。
A+B=(3x2+x2)+(4x2x)+(15)A + B = (3x^2 + x^2) + (4x - 2x) + (-1 - 5)
A+B=4x2+2x6A + B = 4x^2 + 2x - 6
したがって、アに当てはまる数は2、イに当てはまる数は6です。

3. 最終的な答え

ア:2
イ:6

「代数学」の関連問題

$x = 2 + \sqrt{3}$ であるとき、以下の値を求めます。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$, $x^4 + \frac{1}...

式の計算有理化多項式の計算根号を含む式
2025/8/2

数列 $\{a_n\}$ が与えられており、その漸化式は $a_{n+1} = \frac{n+2}{n} a_n + 1$ であり、初期値は $a_1 = 2$ である。この数列の一般項 $a_n$...

数列漸化式一般項
2025/8/2

与えられた式 $(a^2 + 2ab - 3b) \times 3ab$ を展開し、 $3a^3b + \boxed{\text{ト}} a^2b^2 - \boxed{\text{ナ}} ab^2$...

式の展開多項式計算
2025/8/2

問題は、多項式の計算 $2x(3x^2+4x)$ を計算し、その結果を $ツx^3 + テx^2$ の形で表すとき、$ツ$ と $テ$ に当てはまる数を求める問題です。

多項式展開計算
2025/8/2

与えられた3つの式を展開する問題です。 (1) $(a+2)(2a-b+3)$ (2) $(x-3)(x-2y+4)$ (3) $(a-3b-1)(a-b)$

展開多項式
2025/8/2

与えられた式 $3xy^3 \times (-4x^2y)^2$ を計算し、その結果を $Ax^By^C$ の形で表す時の $A$, $B$, $C$ を求める問題です。

式の計算指数法則単項式多項式
2025/8/2

問題は $(-2x^2)^3 \times x^4 = \boxed{コサ}x^{\boxed{シス}}$ を満たすコサ、シスを求める問題です。

指数法則単項式計算
2025/8/2

多項式 $A = 3x^2 + 4x - 1$ と $B = x^2 - 2x - 5$ が与えられたとき、$3A - 2B$ を計算し、その結果を $ax^2 + bx + c$ の形で表し、$a,...

多項式式の計算展開同類項
2025/8/2

与えられた式 $(10a^2 + 2a) \div 2a$ を計算し、簡単にする問題です。

式の計算代数簡約化分数
2025/8/2

$A = 3x^2 + 4x - 1$ と $B = x^2 - 2x - 5$ が与えられたとき、$A - B$ を計算し、その結果を $ウx^2 + エx + オ$ の形で表す。

多項式式の計算展開同類項
2025/8/2