2次方程式 $x^2 - 5x + 2 = 0$ を解き、解の公式を用いて $x = \frac{セ \pm \sqrt{ソタ}}{チ}$ の形で表す。そして、セ、ソ、タ、チに当てはまる値を求める。

代数学二次方程式解の公式
2025/8/2

1. 問題の内容

2次方程式 x25x+2=0x^2 - 5x + 2 = 0 を解き、解の公式を用いて x=±ソタx = \frac{セ \pm \sqrt{ソタ}}{チ} の形で表す。そして、セ、ソ、タ、チに当てはまる値を求める。

2. 解き方の手順

与えられた2次方程式 x25x+2=0x^2 - 5x + 2 = 0 を解くために、解の公式を用いる。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解の公式は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
今回の問題では、a=1a = 1, b=5b = -5, c=2c = 2 であるから、解の公式に代入すると、
x=(5)±(5)24(1)(2)2(1)x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)}
x=5±2582x = \frac{5 \pm \sqrt{25 - 8}}{2}
x=5±172x = \frac{5 \pm \sqrt{17}}{2}
したがって、=5セ = 5, ソタ=17ソタ = 17, =2チ = 2 となる。

3. 最終的な答え

セ = 5
ソ = 1
タ = 7
チ = 2

「代数学」の関連問題

2つの絶対値を含む方程式を解く問題です。 (7) $|2x-3| = 15$ (8) $|3x-5| - 7 = 0$

絶対値方程式一次方程式
2025/8/2

絶対値を含む不等式 $|x| \ge 5$ の解を求める問題です。解は $x \le$ サシ、ス $\le x$ の形で与えられます。

絶対値不等式不等式の解法
2025/8/2

絶対値の不等式 $|x-2|<3$ の解を、$クケ < x < コ$ の形で求めよ。

絶対値不等式一次不等式
2025/8/2

問題は、絶対値を含む不等式 $|x| < 4$ の解を求めるものです。解は「オカ < x < キ」の形式で与えられ、オカとキに当てはまる数を答えます。

絶対値不等式解の範囲
2025/8/2

絶対値を含む方程式 $|x + 2| = 5$ の解を求める問題です。

絶対値方程式場合分け一次方程式
2025/8/2

与えられた4つの二次方程式をそれぞれ解く。 (1) $3x^2 + 7x + 2 = 0$ (2) $2x^2 + 5x - 3 = 0$ (3) $4x^2 - 5x - 6 = 0$ (4) $3...

二次方程式因数分解解の公式
2025/8/2

与えられた等式が $x$ についての恒等式となるように、定数 $a$, $b$, $c$ の値を定める問題です。

恒等式係数比較連立方程式部分分数分解
2025/8/2

与えられた4次方程式 $(x+1)(x+2)(x+3)(x+4)=24$ を解け。

4次方程式方程式解の公式複素数
2025/8/2

不等式 $(x - y + 1)(x^2 + y^2 - 4) < 0$ の表す領域を図示する問題です。

不等式領域グラフ直線
2025/8/2

ベクトル空間 $\mathbb{R}^3$ の部分集合 $W$ が与えられたとき、$W$ が部分空間であるかどうかを調べる問題です。具体的には、以下の4つの $W$ について判定します。 (1) $W...

線形代数ベクトル空間部分空間
2025/8/2