全体集合$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$の部分集合$A = \{1, 3, 5, 7, 9\}$, $B = \{4, 5, 6, 7\}$が与えられたとき、$A^c$($A$の補集合)を求め、要素を小さい方から順に並べる。

離散数学集合補集合
2025/8/3

1. 問題の内容

全体集合U={1,2,3,4,5,6,7,8,9,10}U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}の部分集合A={1,3,5,7,9}A = \{1, 3, 5, 7, 9\}, B={4,5,6,7}B = \{4, 5, 6, 7\}が与えられたとき、AcA^cAAの補集合)を求め、要素を小さい方から順に並べる。

2. 解き方の手順

まず、AAの補集合AcA^cを求めます。AcA^cは全体集合UUの中でAAに含まれない要素の集合です。
U={1,2,3,4,5,6,7,8,9,10}U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
A={1,3,5,7,9}A = \{1, 3, 5, 7, 9\}
Ac=UA={2,4,6,8,10}A^c = U - A = \{2, 4, 6, 8, 10\}
したがって、Ac={2,4,6,8,10}A^c = \{2, 4, 6, 8, 10\}となります。

3. 最終的な答え

A^c = {2, 4, 6, 8, 10}
ク: 2
ケ: 4
コ: 6
サ: 8
シス: 10

「離散数学」の関連問題

a, b, c, d, e の5文字をすべて1列に並べて文字列を作り、それらを辞書式順序に配列する。 (1) 文字列 bdeac は何番目の文字列か? (2) 100番目の文字列は何か?

順列辞書式順序文字列場合の数
2025/8/3

右の地図にあるI, T, S, Aの4つの県を、赤、青、黄、緑の4色を使って塗り分ける方法について、以下の条件を満たす場合の数を求めます。ただし、隣り合う県は異なる色で塗る必要があります。 (1) 4...

場合の数塗り分けグラフ理論
2025/8/3

碁盤の目のように道路が整備された街において、地点Aから地点Bまで最短距離で移動する経路の数を求める問題です。 (1) 全ての経路の数 (2) 地点Cを通る経路の数 (3) 地点Pを通らない経路の数 (...

組み合わせ最短経路包除原理
2025/8/3

(1) 0, 1, 1, 2, 3 を使って 5 桁の整数を作るとき、何通りの数字ができるか。 (2) 75 名のクラスで、2 回の工場見学を行った。 1 回目の見学者は 26 名、2 回目の見学者は...

場合の数順列組合せ場合の数の問題重複順列
2025/8/3

組み合わせの問題を解く必要があります。 (1) ${}_{9}C_{2}$ を計算します。 (2) ${}_{19}C_{1}$ を計算します。 (3) ${}_{8}C_{8}$ を計算します。

組み合わせ二項係数計算
2025/8/3

束に関する以下の2つの問題を解きます。 1. 束の公理を用いて $a \vee a = a$ を示す。

半順序関係公理証明
2025/8/3

束に関する以下の2つの問題を解きます。 1. 束の公理を用いて $a \vee a = a$ を示す。

半順序関係公理冪等律反射律反対称律推移律
2025/8/2

問題155:1, 1, 2, 2, 3, 3という6つの数字を1列に並べる。 (1) 相異なる並べ方は全部で何通りあるか。 (2) 同じ数字が隣り合わない並べ方は何通りあるか。 問題156:正八角形が...

順列組み合わせ重複順列包除原理図形
2025/8/2

与えられた方程式 $x + y + z = 11$ に対して、以下の2つの条件における整数の解の組の数を求める問題です。 (1) $x \geq 0$, $y \geq 0$, $z \geq 0$ ...

重複組み合わせ整数解方程式
2025/8/2

与えられた図において、AからBへ最短経路で移動する方法について、以下の3つの場合について総数を求めます。 (1) AからBまで行く。 (2) AからCを通ってBまで行く。 (3) AからCを通らずにB...

組み合わせ最短経路場合の数組み合わせ論
2025/8/2