組み合わせの問題を解く必要があります。 (1) ${}_{9}C_{2}$ を計算します。 (2) ${}_{19}C_{1}$ を計算します。 (3) ${}_{8}C_{8}$ を計算します。

離散数学組み合わせ二項係数計算
2025/8/3

1. 問題の内容

組み合わせの問題を解く必要があります。
(1) 9C2{}_{9}C_{2} を計算します。
(2) 19C1{}_{19}C_{1} を計算します。
(3) 8C8{}_{8}C_{8} を計算します。

2. 解き方の手順

組み合わせの公式は nCr=n!r!(nr)!{}_{n}C_{r} = \frac{n!}{r!(n-r)!} です。
(1) 9C2=9!2!(92)!=9!2!7!=9×82×1=36{}_{9}C_{2} = \frac{9!}{2!(9-2)!} = \frac{9!}{2!7!} = \frac{9 \times 8}{2 \times 1} = 36
(2) 19C1=19!1!(191)!=19!1!18!=191=19{}_{19}C_{1} = \frac{19!}{1!(19-1)!} = \frac{19!}{1!18!} = \frac{19}{1} = 19
(3) 8C8=8!8!(88)!=8!8!0!=8!8!×1=1{}_{8}C_{8} = \frac{8!}{8!(8-8)!} = \frac{8!}{8!0!} = \frac{8!}{8! \times 1} = 1

3. 最終的な答え

(1) 36
(2) 19
(3) 1

「離散数学」の関連問題

(1) 0, 1, 1, 2, 3 を使って 5 桁の整数を作るとき、何通りの数字ができるか。 (2) 75 名のクラスで、2 回の工場見学を行った。 1 回目の見学者は 26 名、2 回目の見学者は...

場合の数順列組合せ場合の数の問題重複順列
2025/8/3

束に関する以下の2つの問題を解きます。 1. 束の公理を用いて $a \vee a = a$ を示す。

半順序関係公理証明
2025/8/3

束に関する以下の2つの問題を解きます。 1. 束の公理を用いて $a \vee a = a$ を示す。

半順序関係公理冪等律反射律反対称律推移律
2025/8/2

問題155:1, 1, 2, 2, 3, 3という6つの数字を1列に並べる。 (1) 相異なる並べ方は全部で何通りあるか。 (2) 同じ数字が隣り合わない並べ方は何通りあるか。 問題156:正八角形が...

順列組み合わせ重複順列包除原理図形
2025/8/2

与えられた方程式 $x + y + z = 11$ に対して、以下の2つの条件における整数の解の組の数を求める問題です。 (1) $x \geq 0$, $y \geq 0$, $z \geq 0$ ...

重複組み合わせ整数解方程式
2025/8/2

与えられた図において、AからBへ最短経路で移動する方法について、以下の3つの場合について総数を求めます。 (1) AからBまで行く。 (2) AからCを通ってBまで行く。 (3) AからCを通らずにB...

組み合わせ最短経路場合の数組み合わせ論
2025/8/2

与えられた真理値表から論理式を設計し、その論理式をカルノー図を用いて簡略化する。真理値表はA, B, Cをインプットとし、Qをアウトプットとする。

論理回路真理値表論理式カルノー図論理簡略化
2025/8/2

与えられた二つの論理回路図をそれぞれ論理式に変換し、その真理値表を作成し、真理値表から論理式の別表現を検討する。

論理回路論理式真理値表ブール代数
2025/8/2

問題は、与えられた2つの論理回路の真理値表を作成することです。1つ目はNOTゲートとNANDゲートの組み合わせで、2つ目は3入力のXORゲートです。

論理回路真理値表ブール代数NOTゲートNANDゲートXORゲート
2025/8/2

与えられた論理回路は XORゲートの変形であり、3つの入力があります。ヒントとして「2変数ごとに XOR を計算」とあります。この回路の出力を求めることが問題です。

論理回路XORゲートブール代数論理演算
2025/8/2