次の極限値を求めます。 $\lim_{x \to \infty} \frac{\log(1 + x^2)}{\log(1 + x)}$解析学極限対数関数2025/8/31. 問題の内容次の極限値を求めます。limx→∞log(1+x2)log(1+x)\lim_{x \to \infty} \frac{\log(1 + x^2)}{\log(1 + x)}limx→∞log(1+x)log(1+x2)2. 解き方の手順x→∞x \to \inftyx→∞ のとき、1+x2≈x21 + x^2 \approx x^21+x2≈x2 および 1+x≈x1 + x \approx x1+x≈x であるため、次のように近似できます。limx→∞log(1+x2)log(1+x)=limx→∞log(x2)log(x)\lim_{x \to \infty} \frac{\log(1 + x^2)}{\log(1 + x)} = \lim_{x \to \infty} \frac{\log(x^2)}{\log(x)}limx→∞log(1+x)log(1+x2)=limx→∞log(x)log(x2)対数の性質 log(ab)=blog(a)\log(a^b) = b \log(a)log(ab)=blog(a) を利用すると、limx→∞log(x2)log(x)=limx→∞2log(x)log(x)\lim_{x \to \infty} \frac{\log(x^2)}{\log(x)} = \lim_{x \to \infty} \frac{2\log(x)}{\log(x)}limx→∞log(x)log(x2)=limx→∞log(x)2log(x)log(x)\log(x)log(x) で約分すると、limx→∞2log(x)log(x)=limx→∞2=2\lim_{x \to \infty} \frac{2\log(x)}{\log(x)} = \lim_{x \to \infty} 2 = 2limx→∞log(x)2log(x)=limx→∞2=2したがって、limx→∞log(1+x2)log(1+x)=2\lim_{x \to \infty} \frac{\log(1 + x^2)}{\log(1 + x)} = 2limx→∞log(1+x)log(1+x2)=23. 最終的な答え2