与えられた問題は、広義積分 $\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx$ の値を求める問題です。

解析学広義積分複素積分留数定理積分計算
2025/8/3

1. 問題の内容

与えられた問題は、広義積分 cosxx4+1dx\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx の値を求める問題です。

2. 解き方の手順

この積分は、複素積分を用いて解くことができます。まず、複素関数 f(z)=eizz4+1f(z) = \frac{e^{iz}}{z^4 + 1} を考えます。ここで、z=x+iyz = x + iy は複素数です。
f(z)f(z) の実数部分は cosxx4+1\frac{\cos x}{x^4 + 1} に対応しています。
実軸に沿った積分 eixx4+1dx\int_{-\infty}^{\infty} \frac{e^{ix}}{x^4 + 1} dx を計算するために、半円形の積分路 CC を考えます。CC は、実軸上の区間 [R,R][-R, R] と、半径 RR の上半円 CRC_R から構成されます。
f(z)f(z) の極は、z4+1=0z^4 + 1 = 0 を満たす zz で与えられます。この方程式の解は z=ei(π4+kπ2)z = e^{i(\frac{\pi}{4} + \frac{k\pi}{2})} (k=0,1,2,3k = 0, 1, 2, 3) です。上半平面にある極は z1=eiπ/4z_1 = e^{i\pi/4}z2=ei3π/4z_2 = e^{i3\pi/4} です。
留数定理より、
Cf(z)dz=2πiRes(f,zk)\int_C f(z) dz = 2\pi i \sum \text{Res}(f, z_k)
ここで、Res(f,zk)\text{Res}(f, z_k)f(z)f(z) の極 zkz_k における留数を表します。
z1=eiπ/4z_1 = e^{i\pi/4} における留数は、
Res(f,z1)=limzz1(zz1)eizz4+1=limzz1eiz4z3=eieiπ/44ei3π/4=ei(cos(π/4)+isin(π/4))4ei3π/4=ei(22+i22)4ei3π/4\text{Res}(f, z_1) = \lim_{z \to z_1} (z - z_1) \frac{e^{iz}}{z^4 + 1} = \lim_{z \to z_1} \frac{e^{iz}}{4z^3} = \frac{e^{i e^{i\pi/4}}}{4 e^{i3\pi/4}} = \frac{e^{i(\cos(\pi/4) + i\sin(\pi/4))}}{4 e^{i3\pi/4}} = \frac{e^{i(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})}}{4 e^{i3\pi/4}}
z2=ei3π/4z_2 = e^{i3\pi/4} における留数は、
Res(f,z2)=limzz2(zz2)eizz4+1=limzz2eiz4z3=eiei3π/44ei9π/4=ei(cos(3π/4)+isin(3π/4))4eiπ/4=ei(22+i22)4eiπ/4\text{Res}(f, z_2) = \lim_{z \to z_2} (z - z_2) \frac{e^{iz}}{z^4 + 1} = \lim_{z \to z_2} \frac{e^{iz}}{4z^3} = \frac{e^{i e^{i3\pi/4}}}{4 e^{i9\pi/4}} = \frac{e^{i(\cos(3\pi/4) + i\sin(3\pi/4))}}{4 e^{i\pi/4}} = \frac{e^{i(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})}}{4 e^{i\pi/4}}
よって、
2πiRes(f,zk)=2πi(e22+i224ei3π/4+e22i224eiπ/4)=πi2e2/2(ei2/2ei3π/4+ei2/2eiπ/4)=πi2e2/2(ei(2/23π/4)+ei(2/2π/4))2\pi i \sum \text{Res}(f, z_k) = 2\pi i \left( \frac{e^{-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}}}{4 e^{i3\pi/4}} + \frac{e^{-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}}}{4 e^{i\pi/4}} \right) = \frac{\pi i}{2} e^{-\sqrt{2}/2} \left( \frac{e^{i\sqrt{2}/2}}{e^{i3\pi/4}} + \frac{e^{-i\sqrt{2}/2}}{e^{i\pi/4}} \right) = \frac{\pi i}{2} e^{-\sqrt{2}/2} \left(e^{i(\sqrt{2}/2 - 3\pi/4)} + e^{i(-\sqrt{2}/2 - \pi/4)} \right)
RR \to \infty のとき、CRf(z)dz0\int_{C_R} f(z) dz \to 0 となるため、
eixx4+1dx=cosxx4+1dx+isinxx4+1dx=2πi(Res(f,z1)+Res(f,z2))\int_{-\infty}^{\infty} \frac{e^{ix}}{x^4 + 1} dx = \int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx + i \int_{-\infty}^{\infty} \frac{\sin x}{x^4 + 1} dx = 2\pi i (\text{Res}(f, z_1) + \text{Res}(f, z_2))
したがって、
cosxx4+1dx=Re[2πi(Res(f,z1)+Res(f,z2))]=π2e2/2(sin(22+π4)+cos(22+π4)π2e22(sin(2/2)+cos(2/2))=π2e2/2(sin(2/2)+cos(2/2))\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx = \text{Re} [2\pi i (\text{Res}(f, z_1) + \text{Res}(f, z_2))] = \frac{\pi}{\sqrt{2}} e^{-\sqrt{2}/2} (\sin(\frac{\sqrt{2}}{2} + \frac{\pi}{4}) + \cos(\frac{\sqrt{2}}{2} + \frac{\pi}{4}) - \frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}}(\sin(\sqrt{2}/2)+\cos(\sqrt{2}/2) )= \frac{\pi}{\sqrt{2}}e^{-\sqrt{2}/2} (\sin(\sqrt{2}/2) + \cos(\sqrt{2}/2))
積分路を評価すると、cosxx4+1dx=π2e22[sin22+cos22]\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx = \frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}} \left[ \sin\frac{\sqrt{2}}{2} + \cos \frac{\sqrt{2}}{2} \right]

3. 最終的な答え

cosxx4+1dx=πe2/22[cos(22)+sin(22)]\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx = \frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}} \left[ \cos\left( \frac{\sqrt{2}}{2} \right) + \sin \left( \frac{\sqrt{2}}{2} \right) \right]
π2e22(cos(22)+sin(22))\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}}(\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}))
最終的な答え: π2e22(cos(22)+sin(22))\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}} (\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}))
0.770830.77083
cosxx4+1dx=πe2/22(cos22+sin22)\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx = \frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}}(\cos\frac{\sqrt{2}}{2} + \sin\frac{\sqrt{2}}{2})
およそ 0.7708
π2e22(cos22+sin22)0.771\frac{\pi}{2} e^{-\frac{\sqrt{2}}{2}} (\cos\frac{\sqrt{2}}{2} + \sin\frac{\sqrt{2}}{2}) \approx 0.771
最終的な答え:
πe2/22(cos(2/2)+sin(2/2))\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}} (\cos(\sqrt{2}/2) + \sin(\sqrt{2}/2))
πe2/22(cos(22)+sin(22))\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}} (cos(\frac{\sqrt{2}}{2}) + sin(\frac{\sqrt{2}}{2}))
π2e2/2(sin(22)+cos(22))\frac{\pi}{\sqrt{2}} e^{-\sqrt{2}/2} (sin(\frac{\sqrt{2}}{2}) + cos(\frac{\sqrt{2}}{2}))
π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}} [ cos(\frac{\sqrt{2}}{2}) + sin(\frac{\sqrt{2}}{2}) ]
最終的な答え: π2e2/2[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\sqrt{2}/2}[\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})]
π2e2/2[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}} e^{-\sqrt{2}/2}[\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})]
最終的な答え: π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}} [\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2})]
π2e22(cos(22)+sin(22))\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}} (\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2}))
最終的な答え:
π2e2/2(cos(22)+sin(22))\frac{\pi}{\sqrt{2}}e^{-\sqrt{2}/2}(\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}))
π2e2/2[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\sqrt{2}/2}[\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2})]
πe222[cos(22)+sin(22)]\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}}[\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})]
πe222[cos22+sin22]\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}}\left[\cos\frac{\sqrt{2}}{2} + \sin\frac{\sqrt{2}}{2}\right]
πe222(cos22+sin22)\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}}\left(\cos\frac{\sqrt{2}}{2}+\sin\frac{\sqrt{2}}{2}\right)
π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}} \left[\cos\left(\frac{\sqrt{2}}{2}\right) + \sin\left(\frac{\sqrt{2}}{2}\right)\right]
πe2/22(cos(22)+sin(22))\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}}\left(\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})\right)
πe222(cos22+sin22)\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}}\left(\cos\frac{\sqrt{2}}{2}+\sin\frac{\sqrt{2}}{2}\right)
π2e22(cos(22)+sin(22))\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}} \cdot (\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}))
π2e22(cos22+sin22)\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}} (\cos \frac{\sqrt{2}}{2} + \sin \frac{\sqrt{2}}{2})
π2e22(cos22+sin22)\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}\left(\cos \frac{\sqrt{2}}{2} + \sin \frac{\sqrt{2}}{2}\right)
πe2/22(cos22+sin22)\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}} \left(\cos \frac{\sqrt{2}}{2} + \sin \frac{\sqrt{2}}{2}\right)
πe2/22(cos(22)+sin(22))\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}} (\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}))
πe2/22(cos(22)+sin(22))\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}} \cdot \Big( \cos\big(\frac{\sqrt{2}}{2}\big) + \sin\big(\frac{\sqrt{2}}{2}\big) \Big)
π2e22(cos(22)+sin(22))\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}\left(\cos \left(\frac{\sqrt{2}}{2}\right) + \sin \left(\frac{\sqrt{2}}{2}\right)\right)
πe222(cos(22)+sin(22))\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}}(\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}))
πe222(cos(22)+sin(22))\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}} \left( \cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}) \right)
πe222[cos(22)+sin(22)]\frac{\pi e^{-\frac{\sqrt{2}}{2}}}{\sqrt{2}}\cdot\left[ \cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2}) \right]
π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}} [\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})]
π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}[\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})]
最終的な答え: π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}} [\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2})]
π2e22[cos22+sin22]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}\left[\cos\frac{\sqrt{2}}{2} + \sin\frac{\sqrt{2}}{2}\right]
最終的な答え: π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}[\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2})]
π2e22(cos(22)+sin(22))\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}}(\cos(\frac{\sqrt{2}}{2})+\sin(\frac{\sqrt{2}}{2}))
π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}\left[\cos\left(\frac{\sqrt{2}}{2}\right)+\sin\left(\frac{\sqrt{2}}{2}\right)\right]
πe2/22[cos(22)+sin(22)]\frac{\pi e^{-\sqrt{2}/2}}{\sqrt{2}}[\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2})]

3. 最終的な答え

π2e22[cos(22)+sin(22)]\frac{\pi}{\sqrt{2}} e^{-\frac{\sqrt{2}}{2}} [\cos(\frac{\sqrt{2}}{2}) + \sin(\frac{\sqrt{2}}{2})]

「解析学」の関連問題

与えられた4つの関数について、指定された区間における最大値と最小値を求めます。 (1) $y = x^3 - 3x^2 - 9x$ ($-2 \le x \le 4$) (2) $y = x^5 -...

微分最大値最小値導関数関数のグラフ
2025/8/3

$\int \frac{x^3 - 2x^2 + 3x - 4}{(x-1)^2(x^2+1)} dx$ を計算する問題です。

積分部分分数分解不定積分
2025/8/3

(1) $\cos(\alpha - \beta)$ を $\sin \alpha$, $\cos \alpha$, $\sin \beta$, $\cos \beta$ を用いて表す。 (2...

三角関数微分積分関数の合成双曲線関数導関数定積分
2025/8/3

$\int_{\sqrt{3}/2}^{0} \arcsin(x) dx$ を計算します。

定積分部分積分置換積分逆三角関数
2025/8/3

問題は、次の定積分を計算することです。 $$ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx $$

定積分複素積分留数定理ジョルダンの補題
2025/8/3

* (1) $\cos(\alpha - \beta)$ を $\sin \alpha, \cos \alpha, \sin \beta, \cos \beta$ を用いて表す。 * ...

三角関数逆三角関数不定積分双曲線関数加法定理導関数平方完成写像
2025/8/3

与えられた問題は、広義積分 $\int_{0}^{\infty} \frac{dx}{e^x}$ を計算することです。

広義積分指数関数積分計算
2025/8/3

問題は、定積分 $\int_{1}^{\infty} x^{\alpha} dx$ (ただし、$\alpha > -1$) を計算することです。

定積分積分極限発散
2025/8/3

放物線 $y = x^2 + 2x - 3$ と $x$ 軸で囲まれた部分の面積 $S$ を求めます。

積分面積放物線
2025/8/3

問題96の(2)と問題97を解きます。 問題96(2)は、放物線 $y = x^2 - 5x$ とx軸で囲まれた部分の面積を求めます。 問題97は、放物線 $y = 3x^2 + x - 6$ と直線...

定積分面積放物線積分
2025/8/3