与えられた複素数の式を計算します。代数学複素数複素数の計算複素数の加減乗除共役複素数2025/8/31. 問題の内容与えられた複素数の式を計算します。2. 解き方の手順(1) (−4+3i)−(5−2i)(-4+3i)-(5-2i)(−4+3i)−(5−2i)実部と虚部をそれぞれ計算します。(−4−5)+(3−(−2))i=−9+5i(-4-5) + (3-(-2))i = -9 + 5i(−4−5)+(3−(−2))i=−9+5i(2) (6−4i)(5+3i)(6-4i)(5+3i)(6−4i)(5+3i)分配法則を用いて展開します。(6)(5)+(6)(3i)+(−4i)(5)+(−4i)(3i)=30+18i−20i−12i2(6)(5) + (6)(3i) + (-4i)(5) + (-4i)(3i) = 30 + 18i - 20i - 12i^2(6)(5)+(6)(3i)+(−4i)(5)+(−4i)(3i)=30+18i−20i−12i2i2=−1i^2 = -1i2=−1 なので、 30+18i−20i+12=42−2i30 + 18i - 20i + 12 = 42 - 2i30+18i−20i+12=42−2i(3) (4−3i)2(4-3i)^2(4−3i)2(4−3i)(4−3i)(4-3i)(4-3i)(4−3i)(4−3i) を計算します。(4)(4)+(4)(−3i)+(−3i)(4)+(−3i)(−3i)=16−12i−12i+9i2(4)(4) + (4)(-3i) + (-3i)(4) + (-3i)(-3i) = 16 - 12i - 12i + 9i^2(4)(4)+(4)(−3i)+(−3i)(4)+(−3i)(−3i)=16−12i−12i+9i2i2=−1i^2 = -1i2=−1 なので、 16−24i−9=7−24i16 - 24i - 9 = 7 - 24i16−24i−9=7−24i(4) 1+7i4+3i\frac{1+7i}{4+3i}4+3i1+7i分母の共役複素数をかけて分母を実数化します。1+7i4+3i⋅4−3i4−3i=(1+7i)(4−3i)(4+3i)(4−3i)\frac{1+7i}{4+3i} \cdot \frac{4-3i}{4-3i} = \frac{(1+7i)(4-3i)}{(4+3i)(4-3i)}4+3i1+7i⋅4−3i4−3i=(4+3i)(4−3i)(1+7i)(4−3i)分子: (1)(4)+(1)(−3i)+(7i)(4)+(7i)(−3i)=4−3i+28i−21i2=4+25i+21=25+25i(1)(4) + (1)(-3i) + (7i)(4) + (7i)(-3i) = 4 - 3i + 28i - 21i^2 = 4 + 25i + 21 = 25 + 25i(1)(4)+(1)(−3i)+(7i)(4)+(7i)(−3i)=4−3i+28i−21i2=4+25i+21=25+25i分母: (4)2+(3)2=16+9=25(4)^2 + (3)^2 = 16 + 9 = 25(4)2+(3)2=16+9=2525+25i25=2525+2525i=1+i\frac{25+25i}{25} = \frac{25}{25} + \frac{25}{25}i = 1+i2525+25i=2525+2525i=1+i(5) 2+3i2−3i\frac{2+\sqrt{3}i}{2-\sqrt{3}i}2−3i2+3i分母の共役複素数をかけて分母を実数化します。2+3i2−3i⋅2+3i2+3i=(2+3i)(2+3i)(2−3i)(2+3i)\frac{2+\sqrt{3}i}{2-\sqrt{3}i} \cdot \frac{2+\sqrt{3}i}{2+\sqrt{3}i} = \frac{(2+\sqrt{3}i)(2+\sqrt{3}i)}{(2-\sqrt{3}i)(2+\sqrt{3}i)}2−3i2+3i⋅2+3i2+3i=(2−3i)(2+3i)(2+3i)(2+3i)分子: (2)(2)+(2)(3i)+(3i)(2)+(3i)(3i)=4+23i+23i+3i2=4+43i−3=1+43i(2)(2) + (2)(\sqrt{3}i) + (\sqrt{3}i)(2) + (\sqrt{3}i)(\sqrt{3}i) = 4 + 2\sqrt{3}i + 2\sqrt{3}i + 3i^2 = 4 + 4\sqrt{3}i - 3 = 1 + 4\sqrt{3}i(2)(2)+(2)(3i)+(3i)(2)+(3i)(3i)=4+23i+23i+3i2=4+43i−3=1+43i分母: (2)2+(3)2=4+3=7(2)^2 + (\sqrt{3})^2 = 4 + 3 = 7(2)2+(3)2=4+3=71+43i7=17+437i\frac{1+4\sqrt{3}i}{7} = \frac{1}{7} + \frac{4\sqrt{3}}{7}i71+43i=71+743i(6) 24−6\frac{\sqrt{24}}{\sqrt{-6}}−624−6=6i\sqrt{-6} = \sqrt{6}i−6=6i なので、 24−6=246i=466i=2i\frac{\sqrt{24}}{\sqrt{-6}} = \frac{\sqrt{24}}{\sqrt{6}i} = \frac{\sqrt{4}\sqrt{6}}{\sqrt{6}i} = \frac{2}{i}−624=6i24=6i46=i22i⋅−i−i=−2i−i2=−2i1=−2i\frac{2}{i} \cdot \frac{-i}{-i} = \frac{-2i}{-i^2} = \frac{-2i}{1} = -2ii2⋅−i−i=−i2−2i=1−2i=−2i3. 最終的な答え(1) −9+5i-9+5i−9+5i(2) 42−2i42-2i42−2i(3) 7−24i7-24i7−24i(4) 1+i1+i1+i(5) 17+437i\frac{1}{7}+\frac{4\sqrt{3}}{7}i71+743i(6) −2i-2i−2i