36人の生徒が、3人の班と4人の班に分かれて清掃活動を行った。全部でちょうど10班できたとき、3人の班と4人の班がそれぞれ何班ずつできたか求める問題です。

代数学連立方程式文章問題方程式線形代数
2025/8/3

1. 問題の内容

36人の生徒が、3人の班と4人の班に分かれて清掃活動を行った。全部でちょうど10班できたとき、3人の班と4人の班がそれぞれ何班ずつできたか求める問題です。

2. 解き方の手順

3人の班の数を xx 、4人の班の数を yy とします。
班の数の合計と生徒数の合計について、次の2つの式を立てることができます。
班の数:
x+y=10x + y = 10
生徒数:
3x+4y=363x + 4y = 36
1つ目の式から yyxx で表すと、
y=10xy = 10 - x
これを2つ目の式に代入して xx を求めます。
3x+4(10x)=363x + 4(10 - x) = 36
3x+404x=363x + 40 - 4x = 36
x=3640-x = 36 - 40
x=4-x = -4
x=4x = 4
x=4x = 4y=10xy = 10 - x に代入して yy を求めます。
y=104y = 10 - 4
y=6y = 6
したがって、3人の班は4班、4人の班は6班です。

3. 最終的な答え

3人の班:4班
4人の班:6班

「代数学」の関連問題

関数 $f(x) = x^2 - 6x + 10$ について、以下の問いに答えます。 (1) $0 \le x \le 5$ における $f(x)$ の最大値と最小値を求めます。 (2) $a > 0...

二次関数最大値最小値平方完成場合分け
2025/8/4

以下の連立方程式を解く問題です。 $ \begin{cases} 7x+2y=18 \\ \frac{1}{2}x + \frac{1}{5}y = 1 \end{cases} $

連立方程式一次方程式代入法加減法
2025/8/4

次の連立方程式を解きます。 $\begin{cases} \frac{1}{3}x + \frac{1}{2}y = 4 \\ 2x - 3y = 0 \end{cases}$

連立方程式一次方程式代入法計算
2025/8/4

次の連立方程式を解く問題です。 $\begin{cases} 3(y+1) = 1 - x \\ 3x + 5y = 2 \end{cases}$

連立方程式代入法方程式
2025/8/4

与えられた連立方程式を解く問題です。連立方程式は以下の通りです。 $3x + 2y = 17$ $2(x + y) = x + 7$

連立方程式一次方程式代入法計算
2025/8/4

次の連立方程式を解きます。 $ \begin{cases} 0.2x - 0.3y = 2 \\ 3x + 4y = -21 \end{cases} $

連立方程式一次方程式代入法計算
2025/8/4

以下の連立方程式を解きます。 $ \begin{cases} 4x - 3y = -1 \\ 0.3x + 0.2y = 1.2 \end{cases} $

連立方程式一次方程式代入法加減法
2025/8/4

連立方程式を解く問題です。 $4x + y = 73 - 59$ $y = 27$

連立方程式一次方程式代入法
2025/8/4

与えられた方程式 $- \frac{3}{4} + 5 = - \frac{1}{3} \times (- \frac{3}{4}) + 4$ を解いて、$x$ の値を求める問題です。ただし、途中式に...

方程式分数計算
2025/8/4

与えられた2つの二次方程式の解を求める問題です。 (1) $x^2 - 4x + 5 = 0$ (2) $(x^2 - 2x - 4)(x^2 - 2x + 3) + 6 = 0$

二次方程式複素数解の公式因数分解変数変換
2025/8/4