与えられた連立方程式を解く問題です。連立方程式は以下の通りです。 $3x + 2y = 17$ $2(x + y) = x + 7$

代数学連立方程式一次方程式代入法計算
2025/8/4

1. 問題の内容

与えられた連立方程式を解く問題です。連立方程式は以下の通りです。
3x+2y=173x + 2y = 17
2(x+y)=x+72(x + y) = x + 7

2. 解き方の手順

まず、2番目の式を展開して整理します。
2(x+y)=x+72(x+y) = x + 7
2x+2y=x+72x + 2y = x + 7
2xx+2y=72x - x + 2y = 7
x+2y=7x + 2y = 7
これで、連立方程式は以下のようになりました。
3x+2y=173x + 2y = 17 (1)
x+2y=7x + 2y = 7 (2)
(1)式から(2)式を引きます。
(3x+2y)(x+2y)=177(3x + 2y) - (x + 2y) = 17 - 7
3x+2yx2y=103x + 2y - x - 2y = 10
2x=102x = 10
x=5x = 5
x=5x = 5 を(2)式に代入します。
5+2y=75 + 2y = 7
2y=752y = 7 - 5
2y=22y = 2
y=1y = 1

3. 最終的な答え

x=5x = 5, y=1y = 1

「代数学」の関連問題

Aさんは家から2400m離れた図書館へ行く途中で文具店に立ち寄った。グラフは、Aさんが出発してからの時間 $x$ 分後の家からの距離 $y$ mを表している。 (1) 文具店に立ち寄るまでのAさんの速...

一次関数グラフ速さ方程式文章問題
2025/8/4

以下の5つの問題を解きます。 (1) $(2\sqrt{5}-\sqrt{3}-3)(2\sqrt{5}-\sqrt{3}+3)$ を計算する。 (2) $(x+1)(x^2-x+1)$ を展開して簡...

式の計算展開因数分解二次関数平方根
2025/8/4

与えられた4つの不等式をそれぞれ証明し、等号が成り立つ場合を調べる。 (1) $x^2 + y^2 \geq 2(x+y-1)$ (2) $x^2 + 2xy + 2y^2 \geq 0$ (3) $...

不等式証明平方完成相加相乗平均
2025/8/4

$x = \sqrt{5} + \sqrt{3}$、$y = \sqrt{5} - \sqrt{3}$ のとき、$x^2 - y^2$ の値を求めます。

式の計算因数分解平方根
2025/8/4

$(\sqrt{6} + \sqrt{2})(\sqrt{24} - \sqrt{8})$ を計算します。

式の計算根号展開
2025/8/4

以下の6つの問題を解きます。 * 問1: $7 - 6 \times \frac{3}{2}$ を計算する。 * 問2: $4a + 3b - (3a - 2b)$ を計算する。 * 問3...

四則演算式の計算展開一次方程式連立方程式
2025/8/4

与えられた問題は、方程式 $2x - y = 3$ と直線 $l$ に関する以下の3つの質問です。 (1) 方程式 $2x - y = 3$ について、$x$ と $y$ の関係を表す表の空欄(アとイ...

一次方程式連立方程式グラフ座標
2025/8/4

$a$ を正の定数とし、$f(x) = x^2 + 2(a-3)x - a^2 + 3a + 5$ とする。 2次関数 $y=f(x)$ のグラフの頂点の $x$ 座標を $p$ とするとき、$p$ ...

二次関数平方完成最大・最小関数のグラフ
2025/8/4

次のアからエの中で、$y$ が $x$ の一次関数であるものをすべて選び、記号で答える問題です。 * ア:面積が $60 \text{ cm}^2$ の長方形の縦の長さ $x \text{ cm}...

一次関数関数比例反比例
2025/8/4

$f(x) = x^2 + ax - 2a + 6$ の $x \geq 0$ における最小値を求める問題です。最小値は $a$ の値によって場合分けされます。さらに、$f(x)$ の $x \geq...

二次関数最大・最小場合分け平方完成
2025/8/4