$\int \frac{dx}{x^3+1}$ を求めよ。被積分関数は $\frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$ ($A, B, C$ は定数) と分解できる。解析学積分部分分数分解不定積分有理関数の積分2025/8/41. 問題の内容∫dxx3+1\int \frac{dx}{x^3+1}∫x3+1dx を求めよ。被積分関数は Ax+1+Bx+Cx2−x+1\frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}x+1A+x2−x+1Bx+C (A,B,CA, B, CA,B,C は定数) と分解できる。2. 解き方の手順まず、x3+1x^3 + 1x3+1 を因数分解します。x3+1=(x+1)(x2−x+1)x^3 + 1 = (x+1)(x^2 - x + 1)x3+1=(x+1)(x2−x+1)次に、与えられた分数式を部分分数分解します。1x3+1=Ax+1+Bx+Cx2−x+1\frac{1}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}x3+11=x+1A+x2−x+1Bx+C両辺に (x+1)(x2−x+1)(x+1)(x^2-x+1)(x+1)(x2−x+1) を掛けると、1=A(x2−x+1)+(Bx+C)(x+1)1 = A(x^2-x+1) + (Bx+C)(x+1)1=A(x2−x+1)+(Bx+C)(x+1)1=Ax2−Ax+A+Bx2+Bx+Cx+C1 = Ax^2 - Ax + A + Bx^2 + Bx + Cx + C1=Ax2−Ax+A+Bx2+Bx+Cx+C1=(A+B)x2+(−A+B+C)x+(A+C)1 = (A+B)x^2 + (-A+B+C)x + (A+C)1=(A+B)x2+(−A+B+C)x+(A+C)係数を比較して、以下の連立方程式を得ます。A+B=0A+B = 0A+B=0−A+B+C=0-A+B+C = 0−A+B+C=0A+C=1A+C = 1A+C=1これらの式を解きます。B=−AB = -AB=−A−A−A+C=0 ⟹ C=2A-A - A + C = 0 \implies C = 2A−A−A+C=0⟹C=2AA+2A=1 ⟹ 3A=1 ⟹ A=13A + 2A = 1 \implies 3A = 1 \implies A = \frac{1}{3}A+2A=1⟹3A=1⟹A=31したがって、B=−13B = -\frac{1}{3}B=−31、C=23C = \frac{2}{3}C=32∫dxx3+1=∫1/3x+1+−13x+23x2−x+1dx\int \frac{dx}{x^3+1} = \int \frac{1/3}{x+1} + \frac{-\frac{1}{3}x+\frac{2}{3}}{x^2-x+1} dx∫x3+1dx=∫x+11/3+x2−x+1−31x+32dx=13∫1x+1dx+13∫−x+2x2−x+1dx= \frac{1}{3} \int \frac{1}{x+1} dx + \frac{1}{3} \int \frac{-x+2}{x^2-x+1} dx=31∫x+11dx+31∫x2−x+1−x+2dx=13ln∣x+1∣+13∫−12(2x−1)+32x2−x+1dx= \frac{1}{3} \ln|x+1| + \frac{1}{3} \int \frac{-\frac{1}{2}(2x-1) + \frac{3}{2}}{x^2-x+1} dx=31ln∣x+1∣+31∫x2−x+1−21(2x−1)+23dx=13ln∣x+1∣−16∫2x−1x2−x+1dx+12∫1x2−x+1dx= \frac{1}{3} \ln|x+1| - \frac{1}{6} \int \frac{2x-1}{x^2-x+1} dx + \frac{1}{2} \int \frac{1}{x^2-x+1} dx=31ln∣x+1∣−61∫x2−x+12x−1dx+21∫x2−x+11dx=13ln∣x+1∣−16ln∣x2−x+1∣+12∫1(x−12)2+34dx= \frac{1}{3} \ln|x+1| - \frac{1}{6} \ln|x^2-x+1| + \frac{1}{2} \int \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}} dx=31ln∣x+1∣−61ln∣x2−x+1∣+21∫(x−21)2+431dx=13ln∣x+1∣−16ln∣x2−x+1∣+12⋅23arctan(x−1/23/2)+C= \frac{1}{3} \ln|x+1| - \frac{1}{6} \ln|x^2-x+1| + \frac{1}{2} \cdot \frac{2}{\sqrt{3}} \arctan(\frac{x-1/2}{\sqrt{3}/2}) + C=31ln∣x+1∣−61ln∣x2−x+1∣+21⋅32arctan(3/2x−1/2)+C=13ln∣x+1∣−16ln∣x2−x+1∣+13arctan(2x−13)+C= \frac{1}{3} \ln|x+1| - \frac{1}{6} \ln|x^2-x+1| + \frac{1}{\sqrt{3}} \arctan(\frac{2x-1}{\sqrt{3}}) + C=31ln∣x+1∣−61ln∣x2−x+1∣+31arctan(32x−1)+C3. 最終的な答え13ln∣x+1∣−16ln(x2−x+1)+13arctan(2x−13)+C\frac{1}{3} \ln|x+1| - \frac{1}{6} \ln(x^2-x+1) + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C31ln∣x+1∣−61ln(x2−x+1)+31arctan(32x−1)+C