定積分 $\int_{0}^{2} \frac{3x+1}{x^2+4} dx$ を計算する問題です。解析学定積分部分分数分解積分計算対数関数arctan2025/8/41. 問題の内容定積分 ∫023x+1x2+4dx\int_{0}^{2} \frac{3x+1}{x^2+4} dx∫02x2+43x+1dx を計算する問題です。2. 解き方の手順まず、被積分関数を部分分数に分解します。3x+1x2+4=3xx2+4+1x2+4\frac{3x+1}{x^2+4} = \frac{3x}{x^2+4} + \frac{1}{x^2+4}x2+43x+1=x2+43x+x2+41よって、積分は次のようになります。∫023x+1x2+4dx=∫023xx2+4dx+∫021x2+4dx\int_{0}^{2} \frac{3x+1}{x^2+4} dx = \int_{0}^{2} \frac{3x}{x^2+4} dx + \int_{0}^{2} \frac{1}{x^2+4} dx∫02x2+43x+1dx=∫02x2+43xdx+∫02x2+41dxそれぞれの積分を計算します。∫023xx2+4dx=32∫022xx2+4dx=32[log(x2+4)]02=32(log(8)−log(4))=32log(84)=32log(2)\int_{0}^{2} \frac{3x}{x^2+4} dx = \frac{3}{2} \int_{0}^{2} \frac{2x}{x^2+4} dx = \frac{3}{2} [\log(x^2+4)]_{0}^{2} = \frac{3}{2} (\log(8) - \log(4)) = \frac{3}{2} \log(\frac{8}{4}) = \frac{3}{2} \log(2)∫02x2+43xdx=23∫02x2+42xdx=23[log(x2+4)]02=23(log(8)−log(4))=23log(48)=23log(2)∫021x2+4dx=∫021x2+22dx=[12arctan(x2)]02=12(arctan(1)−arctan(0))=12(π4−0)=π8\int_{0}^{2} \frac{1}{x^2+4} dx = \int_{0}^{2} \frac{1}{x^2+2^2} dx = [\frac{1}{2} \arctan(\frac{x}{2})]_{0}^{2} = \frac{1}{2} (\arctan(1) - \arctan(0)) = \frac{1}{2} (\frac{\pi}{4} - 0) = \frac{\pi}{8}∫02x2+41dx=∫02x2+221dx=[21arctan(2x)]02=21(arctan(1)−arctan(0))=21(4π−0)=8πしたがって、∫023x+1x2+4dx=32log(2)+π8\int_{0}^{2} \frac{3x+1}{x^2+4} dx = \frac{3}{2} \log(2) + \frac{\pi}{8}∫02x2+43x+1dx=23log(2)+8π3. 最終的な答え32log2+π8\frac{3}{2} \log 2 + \frac{\pi}{8}23log2+8π