$\int_{0}^{\pi} \sinh(x) \sin^2(nx) dx$ を計算します。解析学積分三角関数双曲線関数部分積分2025/8/41. 問題の内容∫0πsinh(x)sin2(nx)dx\int_{0}^{\pi} \sinh(x) \sin^2(nx) dx∫0πsinh(x)sin2(nx)dx を計算します。2. 解き方の手順まず、sin2(nx)\sin^2(nx)sin2(nx) を三角関数の倍角公式を用いて書き換えます。sin2(nx)=1−cos(2nx)2\sin^2(nx) = \frac{1 - \cos(2nx)}{2}sin2(nx)=21−cos(2nx)したがって、与えられた積分は次のようになります。∫0πsinh(x)sin2(nx)dx=∫0πsinh(x)(1−cos(2nx)2)dx\int_{0}^{\pi} \sinh(x) \sin^2(nx) dx = \int_{0}^{\pi} \sinh(x) \left( \frac{1 - \cos(2nx)}{2} \right) dx∫0πsinh(x)sin2(nx)dx=∫0πsinh(x)(21−cos(2nx))dx=12∫0πsinh(x)dx−12∫0πsinh(x)cos(2nx)dx= \frac{1}{2} \int_{0}^{\pi} \sinh(x) dx - \frac{1}{2} \int_{0}^{\pi} \sinh(x) \cos(2nx) dx=21∫0πsinh(x)dx−21∫0πsinh(x)cos(2nx)dxここで、∫sinh(x)dx=cosh(x)+C\int \sinh(x) dx = \cosh(x) + C∫sinh(x)dx=cosh(x)+C であるため、12∫0πsinh(x)dx=12[cosh(x)]0π=12(cosh(π)−cosh(0))=12(cosh(π)−1)\frac{1}{2} \int_{0}^{\pi} \sinh(x) dx = \frac{1}{2} [\cosh(x)]_{0}^{\pi} = \frac{1}{2} (\cosh(\pi) - \cosh(0)) = \frac{1}{2} (\cosh(\pi) - 1)21∫0πsinh(x)dx=21[cosh(x)]0π=21(cosh(π)−cosh(0))=21(cosh(π)−1)次に、∫sinh(x)cos(2nx)dx\int \sinh(x) \cos(2nx) dx∫sinh(x)cos(2nx)dx を計算します。部分積分を2回繰り返して求めます。∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)−∫cosh(x)(−2nsin(2nx))dx=cosh(x)cos(2nx)+2n∫cosh(x)sin(2nx)dx\int \sinh(x) \cos(2nx) dx = \cosh(x) \cos(2nx) - \int \cosh(x) (-2n \sin(2nx)) dx = \cosh(x) \cos(2nx) + 2n \int \cosh(x) \sin(2nx) dx∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)−∫cosh(x)(−2nsin(2nx))dx=cosh(x)cos(2nx)+2n∫cosh(x)sin(2nx)dx=cosh(x)cos(2nx)+2n[sinh(x)sin(2nx)−∫sinh(x)(2ncos(2nx))dx]= \cosh(x) \cos(2nx) + 2n \left[ \sinh(x) \sin(2nx) - \int \sinh(x) (2n \cos(2nx)) dx \right]=cosh(x)cos(2nx)+2n[sinh(x)sin(2nx)−∫sinh(x)(2ncos(2nx))dx]=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)−4n2∫sinh(x)cos(2nx)dx= \cosh(x) \cos(2nx) + 2n \sinh(x) \sin(2nx) - 4n^2 \int \sinh(x) \cos(2nx) dx=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)−4n2∫sinh(x)cos(2nx)dxよって、∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)−4n2∫sinh(x)cos(2nx)dx\int \sinh(x) \cos(2nx) dx = \cosh(x) \cos(2nx) + 2n \sinh(x) \sin(2nx) - 4n^2 \int \sinh(x) \cos(2nx) dx∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)−4n2∫sinh(x)cos(2nx)dx(1+4n2)∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)(1 + 4n^2) \int \sinh(x) \cos(2nx) dx = \cosh(x) \cos(2nx) + 2n \sinh(x) \sin(2nx)(1+4n2)∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)∫sinh(x)cos(2nx)dx=cosh(x)cos(2nx)+2nsinh(x)sin(2nx)1+4n2+C\int \sinh(x) \cos(2nx) dx = \frac{\cosh(x) \cos(2nx) + 2n \sinh(x) \sin(2nx)}{1 + 4n^2} + C∫sinh(x)cos(2nx)dx=1+4n2cosh(x)cos(2nx)+2nsinh(x)sin(2nx)+Cしたがって、12∫0πsinh(x)cos(2nx)dx=12[cosh(x)cos(2nx)+2nsinh(x)sin(2nx)1+4n2]0π\frac{1}{2} \int_{0}^{\pi} \sinh(x) \cos(2nx) dx = \frac{1}{2} \left[ \frac{\cosh(x) \cos(2nx) + 2n \sinh(x) \sin(2nx)}{1 + 4n^2} \right]_{0}^{\pi}21∫0πsinh(x)cos(2nx)dx=21[1+4n2cosh(x)cos(2nx)+2nsinh(x)sin(2nx)]0π=12[cosh(π)cos(2nπ)+2nsinh(π)sin(2nπ)1+4n2−cosh(0)cos(0)+2nsinh(0)sin(0)1+4n2]= \frac{1}{2} \left[ \frac{\cosh(\pi) \cos(2n\pi) + 2n \sinh(\pi) \sin(2n\pi)}{1 + 4n^2} - \frac{\cosh(0) \cos(0) + 2n \sinh(0) \sin(0)}{1 + 4n^2} \right]=21[1+4n2cosh(π)cos(2nπ)+2nsinh(π)sin(2nπ)−1+4n2cosh(0)cos(0)+2nsinh(0)sin(0)]=12[cosh(π)⋅1+2nsinh(π)⋅01+4n2−1⋅1+2n⋅0⋅01+4n2]= \frac{1}{2} \left[ \frac{\cosh(\pi) \cdot 1 + 2n \sinh(\pi) \cdot 0}{1 + 4n^2} - \frac{1 \cdot 1 + 2n \cdot 0 \cdot 0}{1 + 4n^2} \right]=21[1+4n2cosh(π)⋅1+2nsinh(π)⋅0−1+4n21⋅1+2n⋅0⋅0]=12[cosh(π)−11+4n2]= \frac{1}{2} \left[ \frac{\cosh(\pi) - 1}{1 + 4n^2} \right]=21[1+4n2cosh(π)−1]元の積分は、12(cosh(π)−1)−12[cosh(π)−11+4n2]=12(cosh(π)−1)(1−11+4n2)=12(cosh(π)−1)(4n21+4n2)\frac{1}{2} (\cosh(\pi) - 1) - \frac{1}{2} \left[ \frac{\cosh(\pi) - 1}{1 + 4n^2} \right] = \frac{1}{2} (\cosh(\pi) - 1) \left( 1 - \frac{1}{1 + 4n^2} \right) = \frac{1}{2} (\cosh(\pi) - 1) \left( \frac{4n^2}{1 + 4n^2} \right)21(cosh(π)−1)−21[1+4n2cosh(π)−1]=21(cosh(π)−1)(1−1+4n21)=21(cosh(π)−1)(1+4n24n2)=2n2(cosh(π)−1)1+4n2=\frac{2n^2(\cosh(\pi)-1)}{1+4n^2}=1+4n22n2(cosh(π)−1)3. 最終的な答え2n2(cosh(π)−1)1+4n2\frac{2n^2(\cosh(\pi)-1)}{1+4n^2}1+4n22n2(cosh(π)−1)