次の不定積分を求めなさい。 $\int (-8x^4) \, dx$

解析学不定積分積分多項式
2025/4/5

1. 問題の内容

次の不定積分を求めなさい。
(8x4)dx\int (-8x^4) \, dx

2. 解き方の手順

不定積分の基本的な公式 xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C (ただし、n1n \neq -1)を利用します。
まず、積分記号の外に定数 8-8 を出します。
(8x4)dx=8x4dx\int (-8x^4) \, dx = -8 \int x^4 \, dx
次に、x4x^4 の積分を計算します。n=4n=4 なので、公式を適用すると、
x4dx=x4+14+1+C=x55+C\int x^4 \, dx = \frac{x^{4+1}}{4+1} + C = \frac{x^5}{5} + C
したがって、
8x4dx=8x55+C=85x5+C-8 \int x^4 \, dx = -8 \cdot \frac{x^5}{5} + C = -\frac{8}{5}x^5 + C

3. 最終的な答え

85x5+C-\frac{8}{5}x^5 + C

「解析学」の関連問題

問題文は「極限値とは何か」です。数学の問題というよりは、極限値の定義を問う質問です。

極限関数数列リミット
2025/4/8

関数 $y = 2x^3 - x^2 - 2x + 1$ のグラフと $x$ 軸で囲まれた部分の面積を求めよ。

積分面積グラフ
2025/4/8

問題は2つの数列の和 $S$ を求める問題です。 (1) $ \frac{1}{1\cdot2\cdot3}, \frac{1}{2\cdot3\cdot4}, \frac{1}{3\cdot4\cd...

数列級数部分分数分解有理化シグマ
2025/4/8

次の極限値を、平均値の定理を用いて求める問題です。 $\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x}$

極限平均値の定理三角関数連続性
2025/4/8

与えられた数列の和 $S$ を求める問題です。 (1) 数列: $\frac{1}{1 \cdot 2 \cdot 3}, \frac{1}{2 \cdot 3 \cdot 4}, \frac{1}{...

数列級数部分分数分解有理化Σ(シグマ)
2025/4/8

次の数列の和 $S$ を求めます。 (1) $\frac{1}{1 \cdot 2 \cdot 3}, \frac{1}{2 \cdot 3 \cdot 4}, \frac{1}{3 \cdot 4 ...

数列級数部分分数分解有理化シグマ
2025/4/8

平均値の定理を用いて、極限 $\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x}$ を求める問題です。また、$\frac{\sin x - ...

極限平均値の定理三角関数微分
2025/4/8

与えられた極限 $\lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x}$ を、平均値の定理を用いて求める問題です。

極限平均値の定理テイラー展開三角関数
2025/4/8

画像に書かれている問題は「平均値の定理とは何ですか?」です。

平均値の定理微分連続導関数
2025/4/8

定積分 $\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) \, dx = -\frac{1}{6} (\beta - \alpha)^3$ が表すものを問う...

定積分積分面積二次関数
2025/4/8