画像にある次の3つの式を展開します。 (3) $(x+2)(x-6)$ (4) $(x+3y)(x-4y)$ (5) $(x-2y)(x-y)$代数学展開多項式2025/4/51. 問題の内容画像にある次の3つの式を展開します。(3) (x+2)(x−6)(x+2)(x-6)(x+2)(x−6)(4) (x+3y)(x−4y)(x+3y)(x-4y)(x+3y)(x−4y)(5) (x−2y)(x−y)(x-2y)(x-y)(x−2y)(x−y)2. 解き方の手順各々の式を展開します。(3) (x+2)(x−6)(x+2)(x-6)(x+2)(x−6)x2−6x+2x−12x^2 - 6x + 2x - 12x2−6x+2x−12x2−4x−12x^2 - 4x - 12x2−4x−12(4) (x+3y)(x−4y)(x+3y)(x-4y)(x+3y)(x−4y)x2−4xy+3xy−12y2x^2 - 4xy + 3xy - 12y^2x2−4xy+3xy−12y2x2−xy−12y2x^2 - xy - 12y^2x2−xy−12y2(5) (x−2y)(x−y)(x-2y)(x-y)(x−2y)(x−y)x2−xy−2xy+2y2x^2 - xy - 2xy + 2y^2x2−xy−2xy+2y2x2−3xy+2y2x^2 - 3xy + 2y^2x2−3xy+2y23. 最終的な答え(3) x2−4x−12x^2 - 4x - 12x2−4x−12(4) x2−xy−12y2x^2 - xy - 12y^2x2−xy−12y2(5) x2−3xy+2y2x^2 - 3xy + 2y^2x2−3xy+2y2