$sin 66^\circ$を$cos$を使って45度以下の角度で表す問題です。つまり、$sin 66^\circ = cos □^\circ$の□を求めます。

幾何学三角比三角関数角度sincos公式
2025/8/5

1. 問題の内容

sin66sin 66^\circcoscosを使って45度以下の角度で表す問題です。つまり、sin66=cossin 66^\circ = cos □^\circの□を求めます。

2. 解き方の手順

三角比の公式sin(90θ)=cosθsin(90^\circ - θ) = cos θを利用します。
この公式を変形すると、sinθ=cos(90θ)sin θ = cos(90^\circ - θ)となります。
問題文のsin66sin 66^\circにこの公式を適用すると、
sin66=cos(9066)sin 66^\circ = cos(90^\circ - 66^\circ)
sin66=cos24sin 66^\circ = cos 24^\circ
したがって、sin66=cos24sin 66^\circ = cos 24^\circです。
ここで、2424^\circは45度以下という条件を満たしています。

3. 最終的な答え

2424^\circ

「幾何学」の関連問題

直線 $2x - y - 1 = 0$ を $l$ とするとき、2点 $A(0, 4)$ と $B(a, b)$ が直線 $l$ に関して対称である。このとき、$a$ と $b$ の値を求める。

直線対称座標連立方程式
2025/8/5

長さ2mの棒ABを観測地点Pから眺めている模式図が与えられている。MはABの中点であり、PはABの垂直二等分線上にある。PM = 2m のとき、$\tan{\angle ABP}$ の値を求めよ。

三角比tan直角三角形相似
2025/8/5

長さ2mの棒ABを観測地点Pから眺めている。MはABの中点であり、PはABの垂直二等分線上にある。 (1) PM = 2mのとき、tan∠ABPの値を求める。選択肢はア: 1/2、イ: √2/2、ウ:...

三角比直角三角形角度tansinピタゴラスの定理
2025/8/5

三角形ABCの内心をIとする。 (1) 図に示された角$x$の大きさを求める。 (2) 直線BIと辺ACの交点をEとする。AB=8, BC=7, AC=4であるとき、BI:IEを求める。

三角形内心角の二等分線角度
2025/8/5

2つの直線 $y=x$ と $y = -\frac{1}{\sqrt{3}}x$ のなす鋭角を求めよ。

角度直線傾き三角関数
2025/8/5

$\triangle ABC$ において、点A, B, Cの位置ベクトルがそれぞれ$\vec{a}, \vec{b}, \vec{c}$で与えられている。辺ABの中点をMとするとき、線分CMを2:1に...

ベクトル位置ベクトル内分点三角形
2025/8/5

(2) 点P(4, 1)と直線 $3x + 2y - 1 = 0$ の距離を求める。 (3) 中心が(-3, 4), 半径2の円の方程式を求める。

距離点と直線の距離円の方程式
2025/8/5

2点 $A(-1, 7)$ と $B(4, -3)$ を結ぶ線分 $AB$ について、次の点の座標を求めます。 (i) 線分 $AB$ を $2:3$ に内分する点の座標 (ii) 線分 $AB$ を...

線分内分点外分点座標
2025/8/5

問題は、ある線分を2:3に内分する点の座標を求めることです。ただし、線分の両端の座標が与えられていません。

座標内分点線分
2025/8/5

三角形ABCにおいて、$BC=5$, $CA=3$, $AB=7$である。角Aの内角と外角の二等分線が直線BCと交わる点をそれぞれD, Eとする。線分DEの長さを求めよ。

三角形角の二等分線相似線分の長さ
2025/8/5