定積分 $\int_{-1}^{2} (-6x^2 + 6x) dx$ を計算します。

解析学定積分積分多項式
2025/4/6

1. 問題の内容

定積分 12(6x2+6x)dx\int_{-1}^{2} (-6x^2 + 6x) dx を計算します。

2. 解き方の手順

まず、被積分関数を積分します。
(6x2+6x)dx=6x2dx+6xdx=6x33+6x22+C=2x3+3x2+C\int (-6x^2 + 6x) dx = -6 \int x^2 dx + 6 \int x dx = -6 \cdot \frac{x^3}{3} + 6 \cdot \frac{x^2}{2} + C = -2x^3 + 3x^2 + C
ここで、CC は積分定数です。
次に、積分結果に積分区間の上限と下限を代入して、その差を計算します。
12(6x2+6x)dx=[2x3+3x2]12=(2(2)3+3(2)2)(2(1)3+3(1)2)=(2(8)+3(4))(2(1)+3(1))=(16+12)(2+3)=45=9\int_{-1}^{2} (-6x^2 + 6x) dx = [-2x^3 + 3x^2]_{-1}^{2} = (-2(2)^3 + 3(2)^2) - (-2(-1)^3 + 3(-1)^2) = (-2(8) + 3(4)) - (-2(-1) + 3(1)) = (-16 + 12) - (2 + 3) = -4 - 5 = -9

3. 最終的な答え

-9

「解析学」の関連問題

与えられた関数 $f(x, y)$ が原点 $(0, 0)$ で連続かどうかを判定する問題です。関数は次のように定義されています。 $f(x, y) = \begin{cases} \frac{xy}...

多変数関数連続性極限2変数関数
2025/7/23

与えられた関数 $f(x, y)$ が原点 $(0, 0)$ で連続かどうかを判定する問題です。 関数は以下のように定義されています。 $f(x, y) = \begin{cases} \frac{x...

多変数関数連続性極限
2025/7/23

以下の3つの積分を計算します。 (1) $\int_{1}^{e} \frac{\log x}{x} dx$ (2) $\int_{1}^{2} x \sqrt{x-1} dx$ (3) $\int ...

積分置換積分定積分不定積分
2025/7/23

関数 $f(x) = x\sin x$ について、$f'(x)$ が区間 $(\frac{\pi}{2}, \pi)$ で減少し、$f(x)$ が区間 $(\frac{\pi}{2}, \pi)$ で...

微分関数の増減極値三角関数
2025/7/23

領域 $D$ が $|x| + |y| \leq 1$ で定義されるとき、二重積分 $\iint_D xy \, dxdy$ を計算せよ。

二重積分積分領域対称性奇関数
2025/7/23

(2) $0 < \theta < \frac{\pi}{2}$ において、$f(\theta) = g(\theta)$を満たす $\theta$ の値を $\alpha$ とする。$X = \co...

三角関数方程式三角関数の合成解の公式
2025/7/23

次の3つの積分を計算します。 (1) $\int_{1}^{4} \frac{(\sqrt{x}+1)^2}{x} dx$ (2) $\int_{0}^{\frac{\pi}{2}} \cos^2 \...

積分定積分不定積分三角関数置換積分
2025/7/23

定積分 $\int_{1}^{4} \frac{(\sqrt{x}+1)^2}{x} dx$ を求めます。

定積分不定積分積分部分積分置換積分三角関数の積分
2025/7/23

与えられた定積分を計算する問題です。具体的には、以下の6つの定積分を計算する必要があります。 (1) $\int_{1}^{2} \log x dx$ (2) $\int_{0}^{1} x^{2} ...

定積分部分積分三角関数
2025/7/23

与えられた3つの定積分を計算します。 (1) $\int_0^1 (3x-1)^2 dx$ (2) $\int_0^4 \frac{x}{9+x^2} dx$ (3) $\int_0^1 \frac{...

定積分積分計算置換積分部分分数分解
2025/7/23