次の級数の和を求めます。 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$解析学級数部分分数分解無限級数計算2025/8/51. 問題の内容次の級数の和を求めます。∑n=1∞1n(n+1)(n+2)\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}∑n=1∞n(n+1)(n+2)12. 解き方の手順まず、1n(n+1)(n+2)\frac{1}{n(n+1)(n+2)}n(n+1)(n+2)1 を部分分数分解します。1n(n+1)(n+2)=An+Bn+1+Cn+2\frac{1}{n(n+1)(n+2)} = \frac{A}{n} + \frac{B}{n+1} + \frac{C}{n+2}n(n+1)(n+2)1=nA+n+1B+n+2C両辺に n(n+1)(n+2)n(n+1)(n+2)n(n+1)(n+2) をかけると、1=A(n+1)(n+2)+Bn(n+2)+Cn(n+1)1 = A(n+1)(n+2) + Bn(n+2) + Cn(n+1)1=A(n+1)(n+2)+Bn(n+2)+Cn(n+1)n=0n=0n=0 のとき、1=2A1 = 2A1=2A より A=12A = \frac{1}{2}A=21n=−1n=-1n=−1 のとき、1=−B1 = -B1=−B より B=−1B = -1B=−1n=−2n=-2n=−2 のとき、1=2C1 = 2C1=2C より C=12C = \frac{1}{2}C=21したがって、1n(n+1)(n+2)=12n−1n+1+12(n+2)\frac{1}{n(n+1)(n+2)} = \frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)}n(n+1)(n+2)1=2n1−n+11+2(n+2)1級数の和を計算します。∑n=1∞1n(n+1)(n+2)=∑n=1∞(12n−1n+1+12(n+2))\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \sum_{n=1}^{\infty} (\frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)})∑n=1∞n(n+1)(n+2)1=∑n=1∞(2n1−n+11+2(n+2)1)=12∑n=1∞(1n−2n+1+1n+2)= \frac{1}{2} \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2})=21∑n=1∞(n1−n+12+n+21)=12[(11−22+13)+(12−23+14)+(13−24+15)+(14−25+16)+⋯ ]= \frac{1}{2} [(\frac{1}{1} - \frac{2}{2} + \frac{1}{3}) + (\frac{1}{2} - \frac{2}{3} + \frac{1}{4}) + (\frac{1}{3} - \frac{2}{4} + \frac{1}{5}) + (\frac{1}{4} - \frac{2}{5} + \frac{1}{6}) + \cdots ]=21[(11−22+31)+(21−32+41)+(31−42+51)+(41−52+61)+⋯]=12[11−22+12+limn→∞(−1n+1+12(n+1)+12(n+2))]= \frac{1}{2} [\frac{1}{1} - \frac{2}{2} + \frac{1}{2} + \lim_{n\to\infty}(-\frac{1}{n+1} + \frac{1}{2(n+1)} + \frac{1}{2(n+2)})]=21[11−22+21+limn→∞(−n+11+2(n+1)1+2(n+2)1)]=12[1−1+12]=12⋅12=14= \frac{1}{2} [1-1+\frac{1}{2}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}=21[1−1+21]=21⋅21=413. 最終的な答え14\frac{1}{4}41