自動車の制動距離が速さの2乗に比例するとき、時速 $x$ kmで走っているときの制動距離 $y$ mを求める問題です。 (1) $y$ を $x$ の式で表しなさい。 (2) 制動距離が80mになるのは、時速何kmで走るときか求めなさい。
2025/4/6
1. 問題の内容
自動車の制動距離が速さの2乗に比例するとき、時速 kmで走っているときの制動距離 mを求める問題です。
(1) を の式で表しなさい。
(2) 制動距離が80mになるのは、時速何kmで走るときか求めなさい。
2. 解き方の手順
(1) 制動距離 は速さ の2乗に比例するので、 と表せます。
ある自動車が時速60kmで走っているときの制動距離は20mなので、 のとき を代入すると、
したがって、
(2) 制動距離が80mになるのは、 のときなので、
よって、時速120kmで走るときです。
3. 最終的な答え
(1)
(2) 時速120km