次の和を求める問題です。 (1) $\sum_{k=1}^{n} (3k^2 - 7k + 4)$ (2) $\sum_{k=1}^{n} (k-1)(k-2)$代数学数列シグマ和の公式展開因数分解2025/8/61. 問題の内容次の和を求める問題です。(1) ∑k=1n(3k2−7k+4)\sum_{k=1}^{n} (3k^2 - 7k + 4)∑k=1n(3k2−7k+4)(2) ∑k=1n(k−1)(k−2)\sum_{k=1}^{n} (k-1)(k-2)∑k=1n(k−1)(k−2)2. 解き方の手順(1) ∑k=1n(3k2−7k+4)\sum_{k=1}^{n} (3k^2 - 7k + 4)∑k=1n(3k2−7k+4) を求める。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nを用いる。∑k=1n(3k2−7k+4)=3∑k=1nk2−7∑k=1nk+4∑k=1n1\sum_{k=1}^{n} (3k^2 - 7k + 4) = 3\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k + 4\sum_{k=1}^{n} 1∑k=1n(3k2−7k+4)=3∑k=1nk2−7∑k=1nk+4∑k=1n1=3⋅n(n+1)(2n+1)6−7⋅n(n+1)2+4n= 3 \cdot \frac{n(n+1)(2n+1)}{6} - 7 \cdot \frac{n(n+1)}{2} + 4n=3⋅6n(n+1)(2n+1)−7⋅2n(n+1)+4n=n(n+1)(2n+1)2−7n(n+1)2+4n= \frac{n(n+1)(2n+1)}{2} - \frac{7n(n+1)}{2} + 4n=2n(n+1)(2n+1)−27n(n+1)+4n=n2[(n+1)(2n+1)−7(n+1)+8]= \frac{n}{2}[(n+1)(2n+1) - 7(n+1) + 8]=2n[(n+1)(2n+1)−7(n+1)+8]=n2[2n2+3n+1−7n−7+8]= \frac{n}{2}[2n^2 + 3n + 1 - 7n - 7 + 8]=2n[2n2+3n+1−7n−7+8]=n2[2n2−4n+2]= \frac{n}{2}[2n^2 - 4n + 2]=2n[2n2−4n+2]=n(n2−2n+1)= n(n^2 - 2n + 1)=n(n2−2n+1)=n(n−1)2= n(n-1)^2=n(n−1)2(2) ∑k=1n(k−1)(k−2)\sum_{k=1}^{n} (k-1)(k-2)∑k=1n(k−1)(k−2) を求める。∑k=1n(k−1)(k−2)=∑k=1n(k2−3k+2)\sum_{k=1}^{n} (k-1)(k-2) = \sum_{k=1}^{n} (k^2 - 3k + 2)∑k=1n(k−1)(k−2)=∑k=1n(k2−3k+2)=∑k=1nk2−3∑k=1nk+2∑k=1n1= \sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + 2\sum_{k=1}^{n} 1=∑k=1nk2−3∑k=1nk+2∑k=1n1=n(n+1)(2n+1)6−3⋅n(n+1)2+2n= \frac{n(n+1)(2n+1)}{6} - 3 \cdot \frac{n(n+1)}{2} + 2n=6n(n+1)(2n+1)−3⋅2n(n+1)+2n=n(n+1)(2n+1)6−9n(n+1)6+12n6= \frac{n(n+1)(2n+1)}{6} - \frac{9n(n+1)}{6} + \frac{12n}{6}=6n(n+1)(2n+1)−69n(n+1)+612n=n6[(n+1)(2n+1)−9(n+1)+12]= \frac{n}{6}[(n+1)(2n+1) - 9(n+1) + 12]=6n[(n+1)(2n+1)−9(n+1)+12]=n6[2n2+3n+1−9n−9+12]= \frac{n}{6}[2n^2 + 3n + 1 - 9n - 9 + 12]=6n[2n2+3n+1−9n−9+12]=n6[2n2−6n+4]= \frac{n}{6}[2n^2 - 6n + 4]=6n[2n2−6n+4]=n3[n2−3n+2]= \frac{n}{3}[n^2 - 3n + 2]=3n[n2−3n+2]=n(n−1)(n−2)3= \frac{n(n-1)(n-2)}{3}=3n(n−1)(n−2)3. 最終的な答え(1) n(n−1)2n(n-1)^2n(n−1)2(2) n(n−1)(n−2)3\frac{n(n-1)(n-2)}{3}3n(n−1)(n−2)